
Apertis

Graphics
Architecture

Design
Author: Tomeu Vizoso
Contributors: Sjoerd Simons
Version: 1.2
Status: Final
Date: 17 November 2015
Last Reviewer: Luis Araujo

This proposal was produced exclusively using free and open source software.

Please consider the environment before printing this document.

Table of Contents
Document Change Log...3
1 Introduction...4
2 Requirements..5
3 Overview...6
4 Operation of composition..7
5 DRI2..8
6 Kernel driver...9
7 Xorg driver..10
8 OpenGL ES v2 implementation and EGL implementation...................................11
9 Standards compliance and upstream code...12
10 Glossary..13

Index of Illustrations
Illustration A: Block diagram showing how the different components sit on top of
each other..6

DOCUMENT CHANGE LOG
Version Date Changes

1.2 2015-11-17 • Updated to new name Apertis
• Removed file custom properties (metadata)

1.1 2014-12-11 • Updated to new template

1.0 2012-05-09 • Update title and file name to follow Document Naming
Scheme

1 INTRODUCTION
The goal of this document is to make explicit some characteristics of the Graphics
subsystem that are needed in order to achieve the kind of user experience that
Apertis aims for.

2 REQUIREMENTS
To support the proposed Apertis architecture the underlying Graphics stack needs
to fulfill the following requirements:

◦ Provide complete hardware acceleration for Clutter-based applications
◦ Provide the features needed by Mutter to provide a composited X

environment
◦ Playback of video with hardware acceleration and without any buffer

copies between the hardware decoder and the GPU
◦ Provide the necessary performance for smooth animations and scrolling

3 OVERVIEW
For a platform to support modern rich user interfaces, it needs a very complete
and modern graphics stack. This document further specifies what is required from
the components and functionality needs to be provided.

The diagram below shows a very simplified view of how the different components
interface with each other:

Illustration A: Block diagram showing how the different components sit
on top of each other

4 OPERATION OF COMPOSITION
In X, applications draw to top-level windows, which are backed by pixmaps. When
using a compositing window manager, such as Mutter, this backing pixmap is
offscreen. The compositing window manager composites these offscreen pixmaps
into a final scene which is rendered into the screen framebuffer. In the case of
Mutter this composition is done using GL, (either OpenGL or GL ES).

In order for the composition to be fast enough to sustain smooth animations, the
offscreen pixmaps need to be usable by Mutter as GL textures directly, without
having to perform any copying of data.

The following section give an overview of the underlying components that are
involved in a graphics stack that meets the requirements of Mutter.

5 DRI2
DRI2 (Direct Rendering Infrastructure 2) is an open-source framework to allow X
applications to directly access the underlying GL hw without need to pass through
the X server. In addition it ensure the smooth cooperation between GL using
applications and the Windowing system.

Though not strictly needed, a set of drivers that doesn't make use of DRI2 will be
reimplementing a lot of infrastructure, that is available as open-source already.
Leading to a longer development time, and require more time to stabilize and
integrate properly. Using DRI2 makes sure that all the required functionality is
provided.

A detailed view of how the different components in DRI fit together can be found
here: http://dri.sourceforge.net/doc/dri_control_flow.html

http://dri.sourceforge.net/doc/dri_control_flow.html

6 KERNEL DRIVER
A kernel driver is needed for managing the memory used in graphic operations,
and to arbitrate access to the GPU. For open-source drivers this is implemented
using DRM (Direct Rendering Manager), as with DRI2 it is possible to implement a
driver with the necessary functionality which makes no use of this existing
infrastructure, but this would lead to a longer development time, requires more
time to stabilize and integrate.

7 XORG DRIVER
Compositing window managers rely on several X extensions for their functionality.
The two main extensions are XDamage and XComposite. When XComposite is
used application render their windows to an offscreen pixmap, which can then be
used by the Compositing window manager to composite the final onscreen image.
For a compositing window manager to be able to efficiently work, it needs to know
which (areas of) offscreen pixmaps need to be redrawn. This functionality is
provided by the XDamage extension, which can be used for notifications when
certain (areas of) pixmaps get changed. The last extension heavily used by a
modern linux graphics environment is the XRender extension to accelerate 2d
drawing operations.

To summarize, the Xorg driver needs to implement the extensions XDamage,
XComposite and XRender.

For the XRender extention modes that are most often needed are the following:

• 16/32bpp formats at depths 16, 24 & 32
• all of argb/abgr/xrgb/xbgr
• pictop(clear/src/dst/over/overreverse/in/inreverse/out/outreverse/add/satura

te)
• repeat modes: none, normal, pad
• filtering: nearest, bilinear
• flags: component alpha, separate alpha map

8 OPENGL ES V2 IMPLEMENTATION AND EGL IMPLEMENTATION
As mentioned previously an implementation using the standard DRI2 and DRM
infrastructure is recommended, but regardless of the implementation details it is
crucial X11 is properly support as the windowing system.
Further so that Mutter can composite windows efficiently support for the following
EGL extensions is required: * EGL_KHR_image_base * EGL_KHR_image_pixmap
Both these extensions should be implemented without requiring any copies.

In order to achieve the smoothness in animations and scrolling that is required,
the graphics stack needs to swap buffers on display's Vsync and when using triple
buffering the implementation should drop older frames if newer ones are available
to prevent lag between system input and the onscreen response.

9 STANDARDS COMPLIANCE AND UPSTREAM CODE
All graphics functionality required by the middleware should be exposed using
standard interfaces when applicable (mainly GL ES v2 and EGL) to ensure open-
source components can be used without any further modification. If certain
standard functionality is only available using proprietary extensions or APIs it will
be impossible to merge the required modifications back in the upstream projects,
which greatly increases the maintenance required by that project for the
middleware platform.

10 GLOSSARY
◦ DRI: The Direct Rendering Infrastructure is a framework for allowing

direct access to graphics hardware under the X Window System in a safe
and efficient manner.

◦ DRI2: Revision of the DRI with improved support for direct rendering to
offscreen buffers and compositing.

◦ DRM: API to be implemented by a kernel module to allow userspace to
access graphics hardware.

◦ XRender: API to be implemented by the X driver to allow compositing
operations on drawables.

◦ XDamage: API provided by the X server to allow applications to track
modified regions of drawables.

◦ XComposite: API provided by the X server for applications to "redirect"
their drawing to offscreen buffers, which can be composited later by a
compositor.

	Document Change Log
	1 Introduction
	2 Requirements
	3 Overview
	4 Operation of composition
	5 DRI2
	6 Kernel driver
	7 Xorg driver
	8 OpenGL ES v2 implementation and EGL implementation
	9 Standards compliance and upstream code
	10 Glossary

