
Apertis Sensors and
Actuators Design

Author: Philip Withnall
Contributors: Sjoerd Simons, Alvaro Soliverez, Simon McVittie,

Ekaterina Gerasimova
Version: 0.3.2
Status: Draft
Date: 2016-02-03
Last Reviewer: Simon McVittie

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.3.2 2016-02-03 • Add requirement for SDK hardware
• Add support for non-standard SDK API properties

0.3.1 2016-01-21 • Minor clarifications and typo fixes

0.3.0 2016-01-19 • Add background research on internet of things
frameworks

• Add support for multiple backends, including those
provided by third-party manufacturers and application
developers

• Provide an initial suggestion of the hardware API
• Give more suggestions for compliance testing and app

store validation checks
• Cross-reference the Debug and Logging design for trip

logging of sensor data
• Clarify behaviour of zones

0.2.4 2015-11-17 • Update metadata

0.2.3 2015-10-08 • Clarify lifecycle requirements for bulk recorded data.
• Add requirement for thresholds for property change

notifications.

0.2.2 2015-09-04 • Clarify terminology for the backend.

0.2.1 2015-09-03 • Minor clarifications about permission to enumerate
devices.

0.2.0 2015-09-02 • Expand to cover multiple vehicles; dynamic vehicles
and devices; a more rigorous security design; more
detail on Apertis store validation; more detail on the
vehicle-specific backend.

0.1.1 2015-09-01 • Add appendix; Automotive Message Broker research;
Trailer use case.

0.1.0 2015-08-31 • New document to summarise background research.

Table of Contents
 Document Change Log..2
1 Introduction..6
2 Terminology and concepts...7

2.1 Vehicle...7
2.2 Intra-vehicle network...7
2.3 Inter-vehicle network...7
2.4 Sensor..7
2.5 Actuator..7
2.6 Device...7

3 Use cases...8
3.1 Augmented reality parking...8
3.2 Virtual mechanic...8

3.2.1 Trailer..8
3.3 Petrol station finder...8
3.4 Sightseeing application bundle..8

3.4.1 Basic model vehicle..9
3.5 Changing bundle functionality when driving at speed...9
3.6 Changing audio volume with vehicle or cabin noise...9
3.7 Night mode..9
3.8 Weather feedback or traffic jam feedback...9
3.9 Insurance bundle..10
3.10 Driving setup bundle...10
3.11 Odour detection...10
3.12 Air conditioning control..10

3.12.1 Automatic window feedback..10
3.13 Agricultural vehicle...11
3.14 Roof box...11
3.15 Truck installations...11
3.16 Compromised application bundle..11
3.17 Ethernet intra-vehicle network...11
3.18 Development against the SDK..12

4 Non-use-cases..13
4.1 Bluetooth wrist watch and the Internet of Things...13
4.2 Car-to-car and car-to-infrastructure communications..13
4.3 Buddied and vehicle fleet communications..13

5 Requirements..15
5.1 Enumeration of devices..15
5.2 Enumeration of vehicles...15
5.3 Retrieving data from sensors..15
5.4 Sending data to actuators..15
5.5 Network independence..15
5.6 Bounded latency of processing sensor data...16

5.7 Extensibility for OEMs...16
5.8 Third-party backends..16
5.9 Third-party backend validation...16
5.10 Notifications of changes to sensor data...16
5.11 Uncertainty bounds..17
5.12 Failure feedback..17
5.13 Timestamping..17
5.14 Triggering bundle activation...17
5.15 Bulk recording of sensor data...18
5.16 Sensor security...18
5.17 Actuator security..18
5.18 App store knowledge of device requirements..18
5.19 Accessing devices on multiple vehicles..18
5.20 Third-party accessories...19
5.21 SDK hardware support...19

6 Background on intra-vehicle networks..20
7 Existing sensor systems..21

7.1 W3C Vehicle Information Access API...21
7.2 GENIVI Web API Vehicle...21
7.3 Apple HomeKit...22
7.4 Apple External Accessory API...23
7.5 iOS CarPlay...23
7.6 Android Auto...23
7.7 MirrorLink...24
7.8 Android Sensor API..24
7.9 Automotive Message Broker..25
7.10 AllJoyn...25

8 Approach...26
8.1 Vehicle device daemon..26
8.2 Hardware and app APIs...27

8.2.1 Interactions between backend services...28
8.2.2 Recommended hardware API design...28

 Management API...29
 Property API...30

8.3 Hardware API compliance testing...31
8.4 SDK API compliance testing and simulation..31
8.5 SDK hardware..32
8.6 Trip logging of sensor data...32
8.7 Properties vs devices..32
8.8 High bandwidth or low latency sensors...33
8.9 Timestamps and uncertainty bounds...33
8.10 Zones..33
8.11 Registering triggers and actions..34
8.12 Bulk recording of sensor data...34
8.13 Security...35

8.13.1 Security domains...36

 Application bundle and another application bundle or the rest of the system..........36
 Application bundle and vehicle device daemon...36
 Vehicle device daemon and a backend service...38
 Vehicle device daemon and the rest of the system...39
 Backend service and another backend service or the rest of the system........................39
 SDK emulator...39

8.13.2 Apertis store validation..39
 Checks for access to sensors...39
 Checks for access to actuators..40
 Checks for backend services..40

8.14 Suggested roadmap...41
8.15 Requirements..42

9 Open questions...44
10 Summary of recommendations..45
11 Appendix: W3C API...47

1 INTRODUCTION
This documents possible approaches to designing an API for exposing vehicle sensor
information and allowing interaction with actuators to application bundles on an Apertis
system.

The major considerations with a sensors and actuators API are:

• Bandwidth and latency of sensor data such as that from parking cameras

• Enumeration of sensors and actuators

• Support for multiple vehicles or accessories

• Support for third-party and OEM accessories and customisations

• Multiplexing of access to sensors

• Privilege separation between application bundles using the API

• Policy to restrict access to sensors (privacy sensitive)

• Policy to restrict access to actuators (safety critical)

2 TERMINOLOGY AND CONCEPTS

2.1 VEHICLE

For the purposes of this document, a vehicle may be a car, car trailer, motorbike, bus, truck
tractor, truck trailer, agricultural tractor, or agricultural trailer, amongst other things.

2.2 INTRA-VEHICLE NETWORK

The intra-vehicle network connects the various devices and processors throughout a vehicle.
This is typically a CAN or LIN network, or a hierarchy of such networks. It may, however, be
based on Ethernet or other protocols.

The vehicle network is defined by the OEM, and is statically defined — all devices which are
supported by the network have messages or bandwidth allocated for them at the time of
manufacture. No devices which are not known at the time of manufacture can be
supported by the vehicle network.

2.3 INTER-VEHICLE NETWORK

An inter-vehicle network connects two or more physically connected vehicles together for the
purposes of exchanging information. For example, a network between a truck tractor and
trailer.

An inter-vehicle network (for the purposes of this document) does not cover transient
communications between separate cars on a motorway, for example; or between a vehicle
and static roadside infrastructure it passes. These are car-to-car (C2C) and car-to-
infrastructure (C2X) communications, respectively, and are handled separately.

2.4 SENSOR

A sensor is any input device which is connected to the vehicle’s network but which is not a
direct part of the dashboard user interface. For example: parking cameras, ultrasonic
distance sensors, air conditioning thermometers, light level sensors, etc.

2.5 ACTUATOR

An actuator is any output device which is connected to the vehicle’s network but which is
not a direct part of the dashboard user interface. For example: air conditioning heater, door
locks, electric window motors, interior lights, seat height motors, etc.

2.6 DEVICE

A sensor or actuator.

3 USE CASES
A variety of use cases for application bundle usage of sensor data are given below.
Particularly important discussion points are highlighted at the bottom of each use case.

3.1 AUGMENTED REALITY PARKING

When parking, the feed from a rear-view camera should be displayed on the screen, with
an overlay showing the distance between the back of the vehicle and the nearest object,
taken from ultrasonic or radar distance sensors.

The information from the sensors has to be synchronised with the camera, so correct
distance values are shown for each frame. The latency of the output image has to be low
enough to not be noticed by the driver when parking at low speeds (for example, 5km h· -1).

3.2 VIRTUAL MECHANIC

Provide vehicle status information such as tyre pressure, engine oil level, washer fluid
level and battery status in an application bundle which could, for example, suggest
routine maintenance tasks which need to be performed on the vehicle.

(Taken from http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract.)

3.2.1 TRAILER

The driver attaches a trailer to their vehicle and it contains tyre pressure sensors. These
should be available to the virtual mechanic bundle.

3.3 PETROL STATION FINDER

Monitor the vehicle’s fuel level. When it starts to get low, find nearby petrol stations and
notify the driver if they are near one. Note that this requires programs to be notified of fuel
level changes while not in the foreground.

3.4 SIGHTSEEING APPLICATION BUNDLE

An application bundle could highlight sights of interest out of the windows by combining
the current location (from GPS) with a direction from a compass sensor. Using a compass
rather than the GPS’ velocity angle allows the bundle to work even when the vehicle is
stationary.

Privacy concern: Any application bundle which has access to compass data can
potentially use dead reckoning to track the vehicle’s location, even without access to GPS
data.

http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract

3.4.1 BASIC MODEL VEHICLE

If a vehicle does not have a compass sensor, the sightseeing bundle cannot function at all,
and the Apertis store should not allow the user to install it on their vehicle.

3.5 CHANGING BUNDLE FUNCTIONALITY WHEN DRIVING AT SPEED

An application bundle may want to voluntarily change or disable some of its features when
the vehicle is being driven (as opposed to parked), or when it is being driven fast (above a
cut-off speed). It might want to do this to avoid distracting the driver, or because the
features do not make sense when the vehicle is moving. This requires bundles to be able to
access speedometer and driving mode information.

If the application bundle is using a cut-off speed for this decision, it should not have to
continually monitor the vehicle’s speed to determine whether the cut-off has been
reached.

3.6 CHANGING AUDIO VOLUME WITH VEHICLE OR CABIN NOISE

Bundles may want to adjust their audio output volume, or disable audio output entirely, in
response to changes in the vehicle’s cabin or engine noise levels. For example, a game
bundle could reduce its effects volume if a loud conversation can be heard in the cabin;
but it might want to increase its effects volume if engine noise increases.

Privacy concern: This should be implemented by granting access to overall ‘volume level’
information for different zones in the vehicle; but not by granting access to the actual
audio input data, which would allow the bundle to record conversations. The overall
volume level information should be sufficiently smoothed or high-latency that a malicious
application cannot infer audio information from it.

3.7 NIGHT MODE

Programs may wish to change their colour scheme according to the ambient lighting level
in a particular zone in the cabin, for example by switching to a ‘night mode’ with a dark
colour scheme if driving at night, but not if an interior light is on. This requires bundles to
be able to read external light sensors and the state of internal lights.

3.8 WEATHER FEEDBACK OR TRAFFIC JAM FEEDBACK

A weather bundle may want to crowd-source information about local weather conditions to
corroborate its weather reports. Information from external rain, temperature and
atmospheric pressure sensors could be collected at regular intervals – even while the
weather bundle is not active – and submitted to an online weather service as network
connectivity permits.

Similarly, a traffic jam or navigation bundle may want to crowd-source information about
traffic jams, taking input from the speedometer and vehicle separation distance sensors

to report to an online service about the average speed and vehicle separation in a traffic
jam.

3.9 INSURANCE BUNDLE

A vehicle insurance company may want to offer lower insurance premiums to drivers who
install its bundle, if the bundle can record information about their driving safety and
submit it to the insurance company to give them more information about the driver’s
riskiness. This would need information such as driving duration, distances driven, weather
conditions, acceleration, braking frequency, frequency of using indicator lights, pitch, yaw
and roll when cornering, and potentially vehicle maintenance information. It would also
require access to unique identifiers for the vehicle, such as its VIN. The data would need to
be collected regardless of whether the vehicle is connected to the internet at the time — so
it may need to be stored for upload later.

Privacy concern: Unique identification information like a VIN should not be given to
untrusted bundles, as they may use it to track the user or vehicle.

3.10 DRIVING SETUP BUNDLE

An application bundle may want to control the driving setup — the position of the steering
wheel, its rake, the position of the wing mirrors, the seat position and shape, whether the
vehicle is in sport mode, etc. If a guest driver starts using the vehicle, they could import
their settings from the same bundle on their own vehicle, and the bundle would
automatically adjust the physical driving setup in the vehicle to match the user’s
preferences. The bundle may want to restrict these changes to only happen while the
vehicle is parked.

3.11 ODOUR DETECTION

A vehicle manufacturer may have invented a new type of interior sensor which can detect
foul odours in the cabin. They want to integrate this into an application bundle which will
change the air conditioning settings temporarily to clear the odour when detected. The
Sensors and Actuators API currently has no support for this new sensor. The manufacturer
does not expect their bundle to be used in other vehicles.

3.12 AIR CONDITIONING CONTROL

An application bundle which connects to wrist watch body monitors on each of the
passengers (through an out-of-band channel like Bluetooth, which is out of the scope of
this document; see Bluetooth wrist watch and the Internet of Things) may want to change
the cabin temperature in response to thermometer readings from passengers’ watches.

3.12.1 AUTOMATIC WINDOW FEEDBACK

In order to do this, the bundle may also need to close the automatic windows, but one of

the passengers has their arm hanging out of the window and the hardware interlock
prevents it closing. The bundle must handle being unable to close the window.

3.13 AGRICULTURAL VEHICLE

Apertis is used by an agricultural manufacturer to provide an IVI system for drivers to use
in their latest tractor model. The manufacturer provides a pre-installed app for controlling
their own brand of agricultural accessories for the tractor, so the driver can use it to (for
example) control a tipping trailer and a baler which are hitched to each other behind the
tractor, and also control a bale spear attached to the front of the tractor.

3.14 ROOF BOX

A car driver adds a roof box to their car, provided by a third party, containing a safety
sensor which detects when the box is open. The built-in application bundle for alerting the
driver to doors which are open when the vehicle starts moving should be able to detect
and use this sensor to additionally alert the driver if the roof box is open when they start
moving.

3.15 TRUCK INSTALLATIONS

Trucks are sold as a basis ‘vanilla’ truck with a special installation on top, which is
customised for the truck’s intended use. For example, a rubbish truck, tipping truck or
police truck. The installation is provided by a third party who has a relationship with the
basis truck manufacturer. Each installation has specific sensors and actuators, which are
to be controlled by an application bundle provided by the third party or by the
manufacturer.

3.16 COMPROMISED APPLICATION BUNDLE

An application bundle on the system, A, is installed with permissions to adjust the driver’s
seat position, which is one of the features of the bundle. Another application bundle, B, is
installed without such permissions (as they are not needed for its normal functionality).

Safety critical: An attacker manages to exploit bundle B and execute arbitrary code with
its privileges. The attacker must not be able to escalate this exploit to give B permission to
use actuators attached to the system, or extra sensors. Similarly, they must not be able to
escalate the exploit to gain the privileges of bundle A, and hence bundle A’s permissions to
adjust the driver’s seat position.

3.17 ETHERNET INTRA-VEHICLE NETWORK

A vehicle manufacturer wants to support high-bandwidth devices on their intra-vehicle
network, and decides to use Ethernet for all intra-vehicle communications, instead of a
more traditional CAN or LIN network. Their use of a different network technology should not

affect enumeration or functionality of devices as seen by the user.

3.18 DEVELOPMENT AGAINST THE SDK

An application developer wants to use a local gyroscope sensor attached to their
development machine to feed input to their application while they are developing and
testing it using the SDK.

4 NON-USE-CASES

4.1 BLUETOOTH WRIST WATCH AND THE INTERNET OF THINGS

A passenger gets into the vehicle with a Bluetooth wrist watch which monitors their heart
rate and various other biological variables. They launch their health monitor bundle on the
IVI display, and it connects to their watch to download their recent activity data.

This is not a use case for the Sensors and Actuators API; it should be handled by direct
Bluetooth communication between the health monitor bundle and the watch. If the
Sensors and Actuators API were to support third-party devices (as opposed to ones
specified and installed by the vehicle manufacturer or suppliers), having full support for
all available devices would become a lot harder. Additionally, devices would then appear
and disappear while the vehicle was running (for example, if the user turned off their
watch’s Bluetooth connection while driving); this is not possible with fixed in- vehicle
sensors, and would complicate the sensor enumeration API.

More generally, this use-case is a specific case of the internet of things (IoT), which is out
of scope for this design for the reasons given above. Additionally, supporting IoT devices
would mean supporting wireless communications as part of the sensors service, which
would significantly increase its attack surface due to the complexity of wireless
communications, and the fact they enable remote attacks.

4.2 CAR-TO-CAR AND CAR-TO-INFRASTRUCTURE COMMUNICATIONS

In C2C and C2X communications, vehicles share data with each other as they move into
range of each other or static roadside infrastructure. This information may be anything
from braking and acceleration information shared between convoys of vehicles to improve
fuel efficiency, to payment details shared from a car to toll booth infrastructure.

While many of the use cases of C2C and C2X cover sharing of sensor data, the data being
shared is typically a limited subset of what’s available on one vehicle’s network. Due to the
dynamic nature of C2C and C2X networks, and the greater attack surface caused by the
use of more complex technologies (radio communications rather than wired buses), a
conservative approach to security suggests implementing C2C and C2X on a use-case-by-
use-case basis, using separate system components to those handling intra-vehicle
sensors and actuators. This ensures that control over actuators, which is safety critical,
remains in a separate security domain from C2C and C2X, which must not have access to
actuators on the local vehicle. See the Security section.

An initial suggestion for C2C and C2X communications would be to implement them as a
separate service which consumes sensor data from the sensors and actuators service just
like other applications.

4.3 BUDDIED AND VEHICLE FLEET COMMUNICATIONS

Similarly, long-range communications of sensor data between buddied vehicles or

vehicles operating in a fleet (for example, a haulage or taxi fleet) should be handled
separately from the sensors and actuators service, as such systems involve network
communications. Typical use cases here would be reporting speed and fuel usage
information from trucks or taxis back to headquarters; or letting two friends know each
others’ locations and traffic conditions when both doing the same journey.

5 REQUIREMENTS

5.1 ENUMERATION OF DEVICES

An application bundle must be able to enumerate devices in the vehicle, including
information about where they are located in the vehicle (for example, so that it can adjust
the position and setup of the driver’s seat but not others (see Driving setup bundle)).

It is expected that the set of devices in a vehicle may change dynamically while the vehicle
is running, for example if a roof box were added while the engine was running (Roof box).

Enumeration is particularly important for bundles, as the set of sensors in a particular
vehicle will not change, but the set of sensors seen by a bundle across all the vehicles it’s
installed in will vary significantly.

5.2 ENUMERATION OF VEHICLES

An application bundle must be able to enumerate vehicles connected to the inter-vehicle
network, for example to discover the existence of hitched trailers or agricultural vehicles
(Trailer, Agricultural vehicle).

It is expected that the set of vehicles may change dynamically while the vehicles are
running.

5.3 RETRIEVING DATA FROM SENSORS

An application bundle must be able to retrieve data from sensors. This data must be
strongly typed in order to minimise the possibility of a bundle misinterpreting it, or
sensors from different manufacturers using different units, for example. Sensor data
could vary in type from booleans (see Night mode) through to streaming video data (see
Augmented reality parking). Sensor data may be processed by the system to make it more
useful for application bundles; they do not need direct access to raw sensor data.

5.4 SENDING DATA TO ACTUATORS

An application bundle must be able to send data to actuators (including invoking
methods on them). This data must be strongly typed in order to minimise the possibility of
a bundle misinterpreting it, or actuators from different manufacturers using different
units, for example. Actuator data could vary in type from booleans through to enumerated
types (see Driving setup bundle) and possibly larger data streams, though no concrete use
cases exist for that.

5.5 NETWORK INDEPENDENCE

The API should be independent of the network used to connect to devices — whether it be
Ethernet, LIN or CAN; or whether the device is connected directly to a host processor

(Ethernet intra-vehicle network).

5.6 BOUNDED LATENCY OF PROCESSING SENSOR DATA

Certain sensor data has bounds on its latency. For example, pitch, yaw and roll information
typically arrive as angular rate from sensors, and have to be integrated over time to be
useful to application bundles — if sensor readings are missed, accuracy decreases. Sensor
readings should be processed within the latency limits specified by the sensors. The limits
on forwarding this processed data to bundles are less strict, though it is expected to be
within the latency noticeable by humans (around 20ms) so that it can be displayed in real
time (see Augmented reality parking, Sightseeing application bundle, Changing audio
volume with vehicle or cabin noise).

5.7 EXTENSIBILITY FOR OEMS

New types of device may be developed after the Sensors and Actuators API is released. As
the set of sensors in a vehicle does not vary after release, already-deployed versions of the
API do not need to handle unknown devices. However, there must be a mechanism for
OEMs or third parties working with them to define new device types when developing a
new vehicle or an installation or accessory to go with it. In order for new devices to be
usable by non-OEM application bundle authors, the Sensors and Actuators API must be
updatable or extensible to support them. (Odour detection, Truck installations.)

5.8 THIRD-PARTY BACKENDS

If an OEM or third party produces a new device which can be connected to an existing
vehicle, some code needs to exist to allow communication between the device and the
Apertis sensors and actuators service. This code must be written by the device
manufacturer, as they know the hardware, and must be installable on the Apertis system
before or after vehicle production (so as a system or non-system application). (See
Agricultural vehicle, Roof box, Truck installations.)

5.9 THIRD-PARTY BACKEND VALIDATION

If a third-party device is exposed to the sensors and actuators service, the third party
might not be one who has contributed to or used Apertis before. There must be a process
for validating backends for the sensors and actuators system, to ensure they have a
certain level of code quality and security, in order to reduce the attack surface of the
service as a whole. (See Roof box.)

5.10 NOTIFICATIONS OF CHANGES TO SENSOR DATA

All sensor data changes over time, so the API must support notifying application bundles
of changes to sensor data they are interested in, without requiring the bundle to poll for
updates (see Petrol station finder, Sightseeing application bundle, Changing bundle

functionality when driving at speed, Changing audio volume with vehicle or cabin noise,
Night mode, Odour detection).

Application bundles should be able to request notifications only when a sensor value
crosses a given threshold, to avoid unnecessary notifications (see Changing bundle
functionality when driving at speed).

5.11 UNCERTAINTY BOUNDS

Sensors are not perfectly accurate, and additionally a sensor’s accuracy may vary over
time; each sensor measurement should be provided with uncertainty bounds. For example,
the accuracy of geolocation by mobile phone tower varies with your location.

This is especially possible with data aggregated from multiple sensors, where the
aggregate accuracy can be statistically modelled (for example, distance calculation from
multiple sensors in Weather feedback or traffic jam feedback).

5.12 FAILURE FEEDBACK

As actuators are physical devices, they can fail. The API cannot assume automatic,
immediate or successful application of its changes to properties, and needs to allow for
feedback on all property changes.

For example, the air conditioning coolant on an older vehicle might have leaked, leaving
the air conditioning system unable to cool the cabin effectively. Application bundles which
wish to set the temperature need to have feedback from a thermometer to work out
whether the temperature has reached the target value (see Air conditioning control).

Another example is failure to close windows: Automatic window feedback.

5.13 TIMESTAMPING

In-vehicle networks (especially Ethernet) may have variable latency. In order to correlate
measurements from multiple sensors on the end of connections of varying latency, each
measurement should have an associated timestamp, added at the time the measurement
was recorded (see Augmented reality parking, Sightseeing application bundle).

5.14 TRIGGERING BUNDLE ACTIVATION

Various use cases require a bundle to be able to trigger actions based on sensor data
reaching a certain value, even if the program is not running at that time (see Petrol station
finder, Changing audio volume with vehicle or cabin noise, Odour detection). This requires
some operating system service to monitor a list of trigger conditions even while the
programs which set those triggers are not running, and start the appropriate program so
that it can respond to that trigger.

5.15 BULK RECORDING OF SENSOR DATA

Some bundles require to be able to regularly record sensor measurements, with the
intention of processing them (for example, uploading them to an online service) at a later
time (see Weather feedback or traffic jam feedback, Insurance bundle). This is not latency
sensitive. As an optimisation, a system service could record the sensor readings for them,
to avoid waking up the programs regularly.

Data recorded in this way must only be accessible to the application bundle which
requested it be recorded.

The requesting application bundle is responsible for processing the data periodically, and
deleting it once processed. The system must be able to periodically overwrite recorded
data if running low on space.

5.16 SENSOR SECURITY

As highlighted by the privacy concerns in several of the use cases (Sightseeing application
bundle, Changing audio volume with vehicle or cabin noise, Insurance bundle), there are
security concerns with allowing bundles access to sensor data. The system must be able
to restrict access to some or all types of sensor data unless the user has explicitly granted
a bundle access to it. Bundles with access to sensor data must be in separate security
domains to prevent privilege escalation (Compromised application bundle).

5.17 ACTUATOR SECURITY

Control of actuators is safety critical but not privacy sensitive (unlike sensors). The
system must be able to restrict write access to some or all types of actuator unless the
user has explicitly granted a bundle access to it. Bundles with access to actuators must be
in separate security domains to prevent privilege escalation (Compromised application
bundle).

5.18 APP STORE KNOWLEDGE OF DEVICE REQUIREMENTS

The Apertis store must know which devices (sensors and actuators) an application bundle
requires to function, and should not allow the user to install a bundle which requires a
device their vehicle does not have, or the bundle would be useless (Basic model vehicle).

5.19 ACCESSING DEVICES ON MULTIPLE VEHICLES

The API must support accessing properties for multiple vehicles, such as hitched
agricultural trailers (Agricultural vehicle) or car trailers (Trailer). These vehicles may
appear dynamically while the IVI system is running; for example, in the case where the
driver hitches a trailer with the engine running.

Note: This requirement explicitly does not support C2C or C2X, which are out of scope of
this document. (See Car-to-car and car-to-infrastructure communications.)

5.20 THIRD-PARTY ACCESSORIES

The API must support accessing properties of third-party accessories — either dynamically
attached to the vehicle (Roof box) or installed during manufacture (Truck installations).

5.21 SDK HARDWARE SUPPORT

The SDK must contain a backend for the system which allows appropriate hardware which
is attached to the developer’s machine to be used as sensors or actuators for development
and testing of applications (see Development against the SDK).

This backend must not be available in target images.

6 BACKGROUND ON INTRA-VEHICLE NETWORKS
For the purposes of informing the interface design between the Sensors and Actuators API
and the underlying intra-vehicle network, some background information is needed on
typical characteristics of intra-vehicle networks.

CAN and LIN are common protocols in use, though future development may favour
Ethernet or other protocols. In all cases, the OEM statically defines all protocols, data
structures, and devices which can be on the network. Bandwidth is allocated for all devices
at the time of manufacture; even for devices which are only optionally connected to the
network, either because they’re a premium vehicle feature, or because they are detachable,
such as trailers. In these cases, data structures on the network relating to those devices
are empty when the devices are not connected.

Sometimes flags are used in the protocol, such as ‘is a trailer connected?’.

There are no common libraries for accessing vehicle networks: they differ between OEMs.

7 EXISTING SENSOR SYSTEMS
This chapter describes the approaches taken by various existing systems for exposing
sensor information to application bundles, because it might be useful input for Apertis’
decision making. Where available, it also provides some details of the implementations of
features that seem particularly interesting or relevant.

7.1 W3C VEHICLE INFORMATION ACCESS API

The W3C Vehicle Information Access API1 is a network-independent API for getting and
setting vehicle properties from web apps using JavaScript. It defines a JavaScript
framework (the Vehicle Information Access API) and a standardised set of vehicle
properties; the Vehicle Data specification2.

The API is defined in terms of properties of the vehicle, rather than in terms of specific
sensors. For example, it exposes temperatures as ‘internal temperature’ and ‘external
temperature’ rather than enumerating and allowing access to several different
thermometers.

The Vehicle Data specification has good coverage of general vehicle properties, but does
not cover interactive use cases like parking sensors or cameras.

Although the specification is defined in JavaScript, its main contribution is the
standardised set of properties in the Vehicle Data specification, which could be exposed by
an API in any language.

Extensibility is a core part of the API, although it is not especially rigorously defined3. This
means that new sensor types and vehicle properties could be added by Apertis or its OEMs
and then used in application bundles.

The W3C Automotive and Web Platform Business Group4 is quite large and active (126
members, last active December 2014), so this specification stands a reasonable chance of
being adopted and continuing to be maintained.

7.2 GENIVI WEB API VEHICLE

The GENIVI Web API Vehicle5 (sic) is a proof of concept API for exposing and manipulating
vehicle information to GENIVI apps via a JavaScript API. It is very similar to the W3C Vehicle
Information Access API, and seems to expose a very similar set of properties.

The Web API Vehicle is a proxy for exposing a separate Vehicle Interface API within a HTML5
engine6. The Vehicle Interface API itself is apparently a D-Bus API for sharing vehicle
information between the CAN bus and various clients, including this Web API Vehicle and

1 http://www.w3.org/2014/automotive/vehicle_spec.html
2 http://www.w3.org/2014/automotive/data_spec.html
3 http://www.w3.org/2014/automotive/data_spec.html#Extending
4 https://www.w3.org/community/autowebplatform/
5 http://projects.genivi.org/web-api-vehicle/home
6 http://git.projects.genivi.org/?p=web-api-

vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD, 2.1§

http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://projects.genivi.org/web-api-vehicle/home
https://www.w3.org/community/autowebplatform/
http://www.w3.org/2014/automotive/data_spec.html#Extending
http://www.w3.org/2014/automotive/data_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html

any native apps. Unfortunately, the Vehicle Interface API seems to be unspecified as of
August 2015, at least in publicly released GENIVI documents7.

The Web API Vehicle has the same features and scope as the W3C API, but its
implementation is clumsier, relying a lot more on seemingly unstructured magic strings
for accessing vehicle properties8.

It was last publicly modified in May 2013, and might not be under development any more.
Furthermore, a lot of the wiki links in the specification link to private and inaccessible
data on collab.genivi.org.

7.3 APPLE HOMEKIT

Apple HomeKit9 is an API to allow apps on Apple devices to interact with sensors and
actuators in a home environment, such as garage doors, thermostats, thermometers and
light switches, amongst others. It is designed explicitly for the home environment, and
does not consider vehicles. However, as it is effectively an API for allowing interactions
between sandboxed apps and external sensors and actuators, it bears relevance to the
design of such an API for vehicles.

At its core, HomeKit allows enumeration of devices (‘accessories’) in a home. A large part of
its API is dedicated to grouping these into homes, rooms, service groups and zones so that
collections of accessories can be interacted with simultaneously.

Each accessory implements one or more ‘services’ which are defined interfaces for
specific functionality, such as a light switch interface, or a thermostat interface. Each
service can expose one or more ‘characteristics’ which are readable or writeable properties
of that interface, such as whether a light is on, the current temperature measured by a
thermostat, or the target temperature for the thermostat.

It explicitly maintains separation between current and target states for certain
characteristics, such as temperature controlled by a thermostat, acknowledging that
changes to physical systems take time.

A second part of the API implements ‘actions’ based on sensor values, which are arbitrary
pieces of code executed when a certain condition is met. Typically, this would be to set the
value of a characteristic on some actuator when the input from another sensor meets a
given condition. For example, switching on a group of lights when the garage door state
changes to ‘open’ as someone arrives in the garage.

Critically, triggers and actions are handled by the iOS operating system, so are still
checked and executed when the app which created them is not active.

HomeKit has a simulator for developing apps against10.

7 http://git.projects.genivi.org/?p=web-api-
vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD, 2.2.3§

8 http://git.projects.genivi.org/?p=web-api-
vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD

9 https://developer.apple.com/homekit/
10 https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDevelo

perGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/homekit/
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD

7.4 APPLE EXTERNAL ACCESSORY API

As a precursor to HomeKit, Apple also supports an External Accessory API11, which allows
any iOS device to interact with accessories attached to the device (for example, through
Bluetooth).

In order to use the External Accessory API, an app must list the accessory protocols it
supports in its app manifest. Each accessory supports one or more protocols, defined by
the manufacturer, which are interfaces for aspects of the device’s functionality. They are
equivalent to the ‘services’ in the HomeKit API. The code to implement these protocols is
provided by the manufacturer, and the protocols may be proprietary or standard.

Each accessory exposes versioning information12 which can be used to determine the
protocol to use.

All communication with accessories is done via sessions13, rather than one-shot reads or
writes of properties. Each session is a bi-directional stream along which the accessory’s
protocol is transmitted.

7.5 IOS CARPLAY

iOS CarPlay14 is a system for connecting an iOS device to a car’s IVI system, displaying apps
from the phone on the car’s display and allowing those apps to be controlled by the car’s
touchscreen or physical controls. It does not give the iOS device access to car sensor data15,
and hence is not especially relevant to this design.

It does not (as of August 2015) have an API for integrating apps with the IVI display16.

Most vehicle manufacturers have pledged support for it in the coming years.

7.6 ANDROID AUTO

Android Auto17 is very similar to iOS CarPlay: a system for connecting a phone to the
vehicle’s IVI system so it can use the display and touchscreen or physical controls. As with
CarPlay, it does not give the Android device access to vehicle sensor data, although (as of
August 2015) that is planned for the future.

As of August 2015, it has an API for apps, allowing audio and messaging apps to improve
their integration with the IVI display18.

SW1
11 https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.

html
12 https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_clas

s/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
13 https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/i

ndex.html#//apple_ref/occ/instp/EASession/accessory
14 http://www.apple.com/uk/ios/carplay/
15 http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
16 https://developer.apple.com/carplay/
17 https://www.android.com/auto/
18 https://developer.android.com/training/auto/index.html

https://developer.android.com/training/auto/index.html
https://www.android.com/auto/
https://developer.apple.com/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
http://www.apple.com/uk/ios/carplay/
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1

Most vehicle manufacturers have pledged support for it in the coming years.

7.7 MIRRORLINK

MirrorLink19 is a proprietary system for integrating phones with the IVI display — it is
similar to iOS CarPlay and Android Auto, but produced by the Car Connectivity
Consortium20 rather than a device manufacturer like Apple or Google.

The specifications for MirrorLink are proprietary and only available to registered
developers. In their brochure21, it is stated that support for allowing apps access to sensor
data is planned for the future (as of 2014).

MirrorLink is apparently the technology behind Microsoft’s Windows in the Car system,
which was announced in April 201422.

7.8 ANDROID SENSOR API

Android’s Sensor API23 is a mature system for accessing mobile phone sensors. There are a
more constrained set of sensors available in phones than in vehicles, hence the API
exposes individual sensors, each implementing an interface specific to its type of sensor
(for example, accelerometer, orientation sensor or pressure sensor). The API places a lot of
emphasis on the physical limitations of each sensor, such as its range, resolution, and
uncertainty of its measurements.

The sensors required by an app are listed in its manifest file, which allows the Google Play
store to filter apps by whether the user’s phone has all the necessary sensors.

As Android runs on a multitude of devices from different manufacturers, each with
different sensors, enumeration of the available sensors is also an emphasis of the API,
using its SensorManager class24.

Sensors can be queried by apps, or apps can register for notifications when sensor values
change, including when the app is not in the foreground or when the device is asleep (if
supported by the sensor)25. Apps can also register for notifications when sensor values
satisfy some trigger, such as a ‘significant’ change26.

19 http://www.mirrorlink.com/apps
20 http://carconnectivity.org/
21 http://carconnectivity.org/public/files/files/MirrorLink_2pgBrochure_0.pdf, page 2
22 http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-

the-car-concept-1240245
23 http://developer.android.com/guide/topics/sensors/index.html
24 http://developer.android.com/reference/android/hardware/SensorManager.html
25 http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener

%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
26 http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor

%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29

http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor(android.hardware.TriggerEventListener,%20android.hardware.Sensor)
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor(android.hardware.TriggerEventListener,%20android.hardware.Sensor)
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int)
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int)
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/guide/topics/sensors/index.html
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://carconnectivity.org/public/files/files/MirrorLink_2pgBrochure_0.pdf
http://carconnectivity.org/
http://www.mirrorlink.com/apps

7.9 AUTOMOTIVE MESSAGE BROKER

Automotive Message Broker27 is an Intel OTC project to broker information from the vehicle
networks to applications, exposing a tweaked version of the W3C Vehicle Information
Access API (with a few types and naming conventions tweaked28) over D-Bus to apps, and
interfacing with whatever underlying networks are in use in the vehicle. In short, it has the
same goals as the Apertis Sensors and Actuators API.

As of August 2015, it was last modified in June 2015, so is an active project (although Tizen
is in decline, so this may change). Although it is written in C++, it uses GNOME
technologies like GObject Introspection; but it also uses Qt. Its main daemon is the
Automotive Message Broker daemon, ambd.

One area where it differs from the Apertis design is security (Security); it does not
implement the polkit integration which is key to the vehicle device daemon security
domain boundary. Modifying the security architecture of a large software project after its
initial implementation is typically hard to get right.

Another area where ambd differs from the Apertis design is in the backend: ambd uses
multiple plugins to aggregate vehicle properties from many places. Apertis plans to use a
single OEM-provided, vehicle-specific plugin.

7.10 ALLJOYN

The AllJoyn Framework29 is an internet of things (IoT) framework produced under the Linux
Foundation banner and the AllSeen Alliance30. (Note that IoT frameworks are explicitly out
of scope for this design; this section is for background information only. See section 4.1.) It
allows devices to discover and communicate with each other. It is freely available (open
source) and has components which run on various different operating systems.

As a framework, it abstracts the differences between physical transports, providing a
session API for devices to use in one-to-one or one-to-many configurations for
communication. A lot of its code is orientated towards implementing different physical
transports.

It provides a security API for establishing different trust models between devices.

It provides various communication layer APIs for implementing RPC or raw I/O streams (or
other things in-between) between devices. However, it does not specify the protocols which
devices must use — they are specified by the device manufacturer.

AllJoyn provides common services for setting up new devices, sending notifications
between devices, and controlling devices. It provides one example service for controlling
lamps in a house, where each lamp manufacturer implements a well-defined OEM API for
their lamp, and each application uses the lamp service API which abstracts over these.

27 https://github.com/otcshare/automotive-message-broker
28 https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
29 https://allseenalliance.org/framework
30 https://allseenalliance.org/

https://allseenalliance.org/
https://allseenalliance.org/framework
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
https://github.com/otcshare/automotive-message-broker

8 APPROACH
Based on the above research (section 7) and requirements (section 5), we recommend the
following approach as an initial sketch of a Sensors and Actuators API.

8.1 VEHICLE DEVICE DAEMON

Implement a vehicle device daemon which aggregates all sensor data in the vehicle, and
multiplexes access to all actuators in the vehicle (apart from specialised high bandwidth
devices; see High bandwidth or low latency sensors). It will connect to whichever
underlying buses are used by the OEM to connect devices (for example, the CAN and LIN
buses); see Hardware and app APIs. The implementation may be new, or may be a modified
version of ambd, although it would need large amounts of rework to fit the Apertis design
(see Automotive Message Broker).

The daemon needs to receive and process input within the latency bounds of the sensors.

The daemon should expose a D-Bus interface which follows the W3C Vehicle Information
Access API31. The set of supported properties, out of those defined by the Vehicle Data
specification32, may vary between vehicles — this is as expected by the specification. It
may vary over time as devices dynamically appear and disappear, which programs can
monitor using the Availability interface33.

The W3C specification was chosen rather than something like HomeKit due to its close
match with the requirements, its automotive background, and the fact that it looks like an
active and supported specification. Furthermore, HomeKit requires each device to define
one or more protocols to use, allowing for arbitrary flexibility in how devices communicate
with the controller. All the sensor and actuator use cases which are relevant to vehicles
need only a property interface, however, which supports getting and setting properties,
and being notified when they change.

If an OEM, third party or application developer wishes to add new sensor or actuator types,
they should follow the extension process34 and request that the extensions be
standardised by Apertis — they will then be released in the next version of the Sensors and
Actuators API, available for all applications to use. If a vehicle needs to be released with
those sensors or actuators in the meantime, their properties must be added to the SDK API
in an OEM-specific namespace. Applications from the OEM can use properties from this
namespace until they are standardised in Apertis. See section 8.8.

Multiple vehicles can be supported by exposing new top-level instances of the Vehicle
interface35. For example, each vehicle could be exposed as a new object in D-Bus, each
implementing the Vehicle interface, with changes to the set of vehicles notified using an
interface like the standard D-Bus ObjectManager interface36.

31 http://www.w3.org/2014/automotive/vehicle_spec.html
32 http://www.w3.org/2014/automotive/data_spec.html
33 http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
34 http://www.w3.org/2014/automotive/data_spec.html#Extending
35 http://www.w3.org/2014/automotive/vehicle_spec.html#vehicle-interface
36 http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://www.w3.org/2014/automotive/vehicle_spec.html#vehicle-interface
http://www.w3.org/2014/automotive/data_spec.html#Extending
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
http://www.w3.org/2014/automotive/data_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html

This API can be exposed to application bundles in any binding language supported by
GObject Introspection (including JavaScript), through the use of a client library, just as
with other Apertis services. The client library may provide more specific interfaces than
the D-Bus interface — the D-Bus API may be defined in terms of string keywords and
variant values, whereas the client library API may be sensor-specific strongly typed
interfaces.

8.2 HARDWARE AND APP APIS

The vehicle device daemon will have two APIs: the D-Bus SDK API exposed to applications,
and the hardware API it consumes to provide access to the CAN and LIN buses (for
example). The SDK API is specified by Apertis, and is standardised across all Apertis
deployments in vehicles, so that a bundle written against it will work in all vehicles
(subject to the availability of the devices whose properties it uses).

Open question: The exact definition of the SDK API is yet to be finalised. It should include
support for accessing multiple properties in a single IPC round trip, to reduce IPC
overheads.

The hardware API is also specified by Apertis, and implemented by one or more backend
services which connect to the vehicle buses and devices and expose the information as
properties understandable by the vehicle device daemon, using the hardware API.

At least one backend service must be provided by the vehicle OEM, and it must expose
properties from the vehicle’s standard devices from the vehicle buses. Other backend
services may be provided by the vehicle OEM for other devices, such as optional devices
for premium vehicle models; or truck installations. Similarly, backend services may be
provided by third parties for other devices, such as after-market devices like roof boxes.
Application bundles may provide backend services as well, to expose hardware via
application-specific protocols. Consequently, backend services will likely be developed in
isolation from each other.

Each backend service must expose zero or more properties — it is possible for a backend
to expose zero properties if the device it targets is not currently connected, for example.

Each backend service must run as a separate process, communicating with the vehicle
device daemon over D-Bus using the hardware API. The hardware API needs the following
functionality:

• Bulk enumeration of vehicles

• Bulk notification of changes to vehicle availability

• Bulk enumeration of properties of a vehicle, including readability and writability

• Bulk notification of changes to property availability, readability or writability

• Subscription to and unsubscription from property change notifications

• Bulk property change notifications for subscribed properties

The hardware API will be roughly a similar shape to the SDK API, and hence a lot of

complexity of the vehicle device daemon will be in the vehicle-specific backends (both
operate on properties — section 8.7).

As vehicle networks differ, the backend used in a given vehicle has to be developed by the
OEM developing that vehicle. Apertis may be able to provide some common utility
functions to help in implementing backends, but cannot abstract all the differences
between vehicles. (See Background on intra-vehicle networks.)

It is expected that the main backend service for a vehicle, provided by that vehicle’s OEM,
will be access the vehicle-specific network implementation running in the automotive
domain, and hence will use the inter-domain communications connection37. In order to
avoid additional unnecessary inter-process communication (IPC) hops, it is suggested
that the main backend service acts as the proxy for sensor data on the inter-domain
connection, rather than communicating with a separate proxy in the CE domain — but only
if this is possible within the security requirements on inter-domain connection proxies.

The path for a property to pass from a hardware sensor through to an application is long:
from the hardware sensor, to the backend service, through the D-Bus daemon to the
vehicle device daemon, then through the D-Bus daemon again to the application. This is at
least 5 IPC hops, which could introduce non-negligible latency. See section 8.9 for
discussion about this.

8.2.1 INTERACTIONS BETWEEN BACKEND SERVICES

In order to keep the security model for the system simple, backend services must not be
able to interact. Each device must be exposed by exactly one backend service — two
backend services cannot expose the same device; and neither can they extend devices
exposed by other backend services.

The vehicle device daemon must aggregate the properties exposed by its backends and
choose how to merge them. For example, if one backend service provides a ‘lights’ property
as an array with one element, and another backend service does similarly, the vehicle
device daemon should append the two and expose a ‘lights’ array with both elements in
the SDK API.

For other properties, the vehicle device daemon should combine scalar values. For
example, if one backend service exposes a rain sensor measurement of 4/10, and another
exposes a second measurement (from a separate sensor) of 6/10, the SDK API should
expose an aggregated rain sensor measurement of (for example) 6/10 as the maximum of
the two.

Open question: The exact means for aggregating each property in the Vehicle Data
specification is yet to be determined.

8.2.2 RECOMMENDED HARDWARE API DESIGN

Below is a pseudo-code recommendation for the hardware API. It is not final, but indicates
the current best suggestion for the API. It has two parts — a management API which is
implemented by the vehicle device daemon; and a property API which is implemented by

37 See the Inter-Domain Communications design.

each backend service and queried by the vehicle device daemon.

Types are given in the D-Bus type system notation38.

Management API

Exposed on the well-known name org.apertis.VehicleData1, the
/org/apertis/VehicleData1 object must implement both of the following interfaces.

The org.apertis.VehicleManager1 interface is called by backend services to register
or deregister the org.apertis.Vehicle1 D-Bus objects they expose.

The org.apertis.VehicleZoneManager1 interface is called by backend services to
manage zones within the vehicle.

interface org.apertis.VehicleManager1 {
/* Each parameter is a list of object paths for the objects being
 * added or removed. */
method UpdateVehicleObjects (in ao added, in ao removed)

}

interface org.apertis.VehicleZoneManager1 {
method RegisterZone (in s vehicle_id, in u parent_zone_id, in as tags,
 out u zone_id)
method DeregisterZone (in s vehicle_id, in u zone_id)

method GetZones (in s vehicle_id, in u parent_zone_id, in as tags,
 out a(uasu) zones)

}

When handling a call to UpdateVehicleObjects, the vehicle device daemon must check
that each of the objects being added is on the same D-Bus connection as is making the
UpdateVehicleObjects call. (i.e. One backend service cannot register another backend
service’s objects.)

The zone API provides a way of building an abstract map of the layout of a vehicle, in terms
of a hierarchy of tagged zones. Each zone has an integer identifier (its zone ID), a parent
zone, and a (potentially empty) list of tags to differentiate it from its siblings. There is
always a root zone (ID 0, no tags) which represents the entire vehicle. Each tree of zones is
unique to a particular vehicle. Each zone is uniquely identified within this tree by its ID, or
by the combination of its parent ID and tag list. Consequently, no two siblings may have
the same tag list. However, they may share entries in their tag lists, which allows
‘overlapping’ areas in the vehicle to be represented.

A call to RegisterZone with the parent ID and tag list of an already-existing zone will
return the existing zone’s ID and increment a reference counter in the zone’s private state
so that a zone will only be removed on the last of a series of paired calls to
DeregisterZone.

38 http://dbus.freedesktop.org/doc/dbus-specification.html#type-system

http://dbus.freedesktop.org/doc/dbus-specification.html#type-system

GetZones returns an array of zones (each represented as a tuple of their parent ID, tag
list, and ID) which are immediately below the given parent zone ID and which contain all of
the given tags in their tag lists. All the descendants of these zones will also be returned.

Property API

The property API is implemented by each backend service, which must expose a separate
D-Bus object for each vehicle they wish to output properties for. Each of these objects
must implement the org.apertis.Vehicle1 interface.

This interface is similar to the standard org.freedesktop.DBus.Properties
interface39, with the difference that each property is identified by a zone ID (relative to the
vehicle identified in VehicleId) and a property name, rather than a D-Bus interface name
and a property name. Property names come from the Vehicle Data specification, for
example:

• drivingMode.mode40

• lightStatus.highBeam41

• com.myoem.fancySeatController.backTemperature42

Additionally, each property has four values: its value (of type v); its accuracy (of the same
type v); the timestamp when it was last updated (of type x); and its most specific zone ID
(of type u).

interface org.apertis.Vehicle1 {
readonly property s VehicleId;

method Get (in u zone_id, in s property_name, out (vvx) value)
method Set (in u zone_id, in s property_name, in v value)
method GetAll (in u zone_id, out a(usvvx) properties)

signal PropertiesChanged (u zone_id,
 a(usvvx) changed_properties,
 a(us) invalidated_properties)

}

The Get method must return the value of the given property in exactly the given zone. If no
such property exists in that zone, it must return an error.

In contrast, the GetAll method must return all properties in the given zone and all zones
beneath. So the same property name may be returned in multiple entries (with a different
zone ID each time).

Similarly, the PropertiesChanged signal may be emitted for changes to properties in
zones beneath the indicated one. Each property change is accompanied by the zone ID and

39 http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties
40 https://www.w3.org/2014/automotive/data_spec.html#idl-def-DrivingMode
41 https://www.w3.org/2014/automotive/data_spec.html#idl-def-LightStatus
42 See section 8.8

https://www.w3.org/2014/automotive/data_spec.html#idl-def-LightStatus
https://www.w3.org/2014/automotive/data_spec.html#idl-def-DrivingMode
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties

name of the property, plus its new value, accuracy and timestamp. As with the
org.freedesktop.DBus.Properties.PropertiesChanged signal, properties may be
‘invalidated’ to indicate that they have changed without providing their new value. In this
case only the zone ID and name of the property is provided.

A backend service must emit a PropertiesChanged signal when one of the properties it
exposes changes, but it may wait to combine that signal with those from other changed
properties — the trade-off between latency and notification frequency should be
determined by backend service developers.

8.3 HARDWARE API COMPLIANCE TESTING

As the vehicle-specific and third party backend services to the vehicle device daemon
contain a large part of the implementation of this system, there should be a compliance
test suite which all backend services must pass before being deployed in a vehicle.

If a backend service is provided by an application bundle, that application bundle must
additionally undergo more stringent app store validation, potentially including a
requirement for security review of its code. See Checks for backend services.

The compliance test suite must be automated, and should include a variety of tests to
ensure that the hardware API is used correctly by the backend service. It should be
implemented as a mock D-Bus service which mocks up the hardware management API
(section 8.2.2), and which calls the hardware property API (section 8.2.2). The backend
service must be run against this mock service, and call its methods as normal. The mock
service should return each of the possible return values for each method, including:

• Success.

• Each failure code.

• Timeouts.

• Values which are out of range.

It must call property API methods with various valid and invalid input.

The backend service must not crash or obviously misbehave (such as consuming an
unexpected amount of CPU time or memory).

As the backend service pushes data to the vehicle device daemon, the compliance test
could be trivially passed by a backend service which pushes zero properties to it. This
must not be allowed: backend services must be run under a test harness which triggers all
of their behaviour, for all of the devices they support. Whether this harness simulates
traffic on an underlying intra-vehicle network, or physically provides inputs to a hardware
sensor, is implementation defined. The behaviour must be consistently reproducible for
multiple compliance test runs.

8.4 SDK API COMPLIANCE TESTING AND SIMULATION

Application bundle developers will not be able to test their bundles on real vehicles easily,

so a simulator should be made available as part of the SDK, which exposes a developer-
configurable set of properties to the bundle under test. The simulator must support all
properties and configurations supported by the real vehicle device daemon, including
multiple vehicles and third-party accessories; otherwise bundles will likely never be tested
in such configurations. Similarly, it must support varying properties over time, simulating
dynamic addition and removal of vehicles and devices, and simulating errors in
controlling actuators (for example, Automatic window feedback).

The emulator should be implemented as a special backend service for the vehicle device
daemon, which is provided by the emulator application. That way, it can directly feed
simulated device properties into the daemon. This backend, and the emulator should only
be available on the SDK, and must never be available on production systems.

Compliance testing of application bundles is harder, but as a general principle, any of the
Apertis store validation checks (Apertis store validation) which can be brought forward so
they can be run by the bundle developers, should be brought forward.

8.5 SDK HARDWARE

If a developer has appropriate sensors or actuators attached to their development
machine, the development version of the sensors and actuators system should have a
separate backend service which exposes that hardware to applications for development
and testing, just as if it were real hardware in a vehicle.

This backend service must be separate from the emulator backend service (section 8.4), in
order to allow them to be used independently.

8.6 TRIP LOGGING OF SENSOR DATA

As well as an emulator for application developers to use when testing their applications, it
would be useful to provide pre-recorded ‘trip logs’ of sensor data for typical driving trips
which an application should be tested against. These trip logs should be replayable in
order to test applications.

The design for this is covered in the ‘Trip logging of SDK sensor data’ section of the Debug
and Logging design.

8.7 PROPERTIES VS DEVICES

A major design decision was whether to expose individual sensors to bundles via the SDK
API, or to expose properties of the vehicle, which may correspond to the reading from a
single sensor or to the aggregate of readings from multiple sensors. For example, if
exposing sensors, the API would expose a gyroscope plus several accelerometers, each
returning individual one-dimensional measurements. Bundles would have to process and
aggregate this data themselves — in the majority of cases, that would lead to duplication
of code (and most likely to bugs in applications where they mis-process the data), but it
would also allow more advanced bundles access to the raw data to do interesting things

with. Conversely, if exposing properties, the vehicle device daemon would pre-aggregate
the data so that the properties exposed to bundles are filtered and averaged acceleration
values in three dimensions and three angular dimensions. This would simplify
implementation within bundles, at the cost of preventing a small class of interesting
bundles from accessing the raw data they need.

For the sake of keeping bundles simpler, and hence with potentially fewer bugs, this
design exposes properties rather than sensors in the SDK API. This also means that the
potentially latency sensitive aggregation code happens in the daemon, rather than in
bundles which receive the data over D-Bus, which has variable latency.

Similarly, the hardware API must expose properties as well, rather than individual devices.
It may aggregate data where appropriate (for example, if it has information which is useful
to the aggregation process which it cannot pass on to the vehicle device daemon). This
also means that a set of device semantics, separate from the W3C Vehicle Data property
semantics, does not have to be defined; nor a mapping between it and the properties.

8.8 PROPERTY NAMING

Properties exposed in the SDK API must be named following the Vehicle Data
specification43, starting with the Vehicle interface44. Different parts of the specification
add partial interfaces which extend the Vehicle interface. For example, fuel configuration
information should be exposed as properties starting with fuelConfiguration45:

• fuelConfiguration.fuelType46

• fuelConfiguration.refuelPosition

Property names are formed of components (which may contain the letters a-z, A-Z, and the
digits 0-9; they must start with a letter a-z, and must be in camelCase) separated by dots.
Property names must start and end with a component (not a dot) and contain one or more
components.

If an OEM needs to expose a custom (non-standardised) property, they must do so beneath
an OEM-specific namespace, using reverse-DNS notation for a domain which they control.
For example, for a vendor ‘My OEM’ whose website is myoem.com, they would use
properties like:

• com.myoem.fancySeatController.backTemperature

• com.myoem.roofRack.open

• com.myoem.roofRack.mass

43 https://www.w3.org/2014/automotive/data_spec.html
44 https://www.w3.org/2014/automotive/vehicle_spec.html#idl-def-Vehicle
45 https://www.w3.org/2014/automotive/data_spec.html#idl-def-Vehicle
46 https://www.w3.org/2014/automotive/data_spec.html#idl-def-FuelConfiguration

https://www.w3.org/2014/automotive/data_spec.html#idl-def-Vehicle
https://www.w3.org/2014/automotive/data_spec.html#idl-def-FuelConfiguration
https://www.w3.org/2014/automotive/vehicle_spec.html#idl-def-Vehicle
https://www.w3.org/2014/automotive/data_spec.html

8.9 HIGH BANDWIDTH OR LOW LATENCY SENSORS

Sensors which provide high bandwidth outputs, or whose outputs must reach the bundle
within certain latency bounds (as opposed to simply being aggregated by the vehicle
device daemon within certain latency bounds), will be handled out of band. Instead of
exposing the sensor data via the vehicle device daemon, the address of some out of band
communications channel will be exposed. For video devices, this might be a V4L device
node; for audio devices it might be a PulseAudio device identifier. Multiplexing access to
the device is then delegated to the out of band mechanism.

This considerably relaxes the performance requirements on the vehicle device daemon,
and allows the more specialist high bandwidth use cases to be handled by more
specialised code designed for the purpose.

8.10 TIMESTAMPS AND UNCERTAINTY BOUNDS

The W3C Vehicle Data specification does not define uncertainty fields for any of its data
types (for example, VehicleSpeed contains a single speed field, measured in metres per
hour47). Similarly, it does not associate a timestamp with each measurement. However, it
allows the data types to be extended48, so the data types exposed by the vehicle device
daemon should all include an extension field specifying the uncertainty of the
measurement, in appropriate units; and another specifying the timestamp when the
measurement was taken, in monotonic time49.

For example, the Apertis implementation of VehicleSpeed should be (using the W3C
notation):

interface VehicleSpeed : VehicleCommonDataType {
readonly attribute unsigned short speed; /* metres per hour */
readonly attribute unsigned short uncertainty; /* metres per hour */
readonly attribute signed int64 timestamp;

};

which represents a measurement of speed uncertainty± metres per hour.

8.11 ZONES

The W3C Vehicle Information Access API has a concept of ‘zones’50 which indicate the
physical location of a device in the vehicle. The current version of the specification has a
misleading ZonePosition enumerated type which is not used elsewhere in the API. The
zones which apply to a device are specified as an array of opaque strings, which may have
values other than those in ZonePosition. Multiple strings can be used (like tags) to
describe the location of a device in several dimensions. Furthermore, zones may be nested

47 http://www.w3.org/2014/automotive/data_spec.html#vehiclespeed-interface
48 http://www.w3.org/2014/automotive/data_spec.html#Extending%20Existing%20Data%20Types
49 In the CLOCK_MONOTONIC sense — http://linux.die.net/man/3/clock_gettime
50 http://www.w3.org/2014/automotive/vehicle_spec.html#zone-interface

http://www.w3.org/2014/automotive/vehicle_spec.html#zone-interface
http://linux.die.net/man/3/clock_gettime
http://www.w3.org/2014/automotive/data_spec.html#Extending%20Existing%20Data%20Types
http://www.w3.org/2014/automotive/data_spec.html#vehiclespeed-interface

hierarchically as discussed in section 8.2.2.

Apertis may extend ZonePosition with additional strings to better describe device
locations. Strings which are not defined in this extended enumerated type must not be
used.

Devices should be tagged with zone information which is likely to be useful to application
developers. For example, it is typically not useful to know whether the engine is in the front
or rear of the vehicle, but is useful to know that a particular light is an interior light, above
the driver.

Open question: In addition to the current entries in ZonePosition, what other zone
strings would be useful? ‘internal’ and ‘external’?

8.12 REGISTERING TRIGGERS AND ACTIONS

When subscribing to notifications for changes to a particular property using the
VehicleSignalInterface interface51, a program is also subscribing to be woken up
when that property changes, even if the program is suspended or otherwise not in the
foreground.

Once woken up, the program can process the updated property value, and potentially send
a notification to the user. If the user interacts with this notification, the program may be
brought to the foreground. The program must not be automatically brought to the
foreground without user interaction or it will steal the user’s focus52, which is distracting.

Alternatively, the program could process the updated property value in the background
without notifying the user.

The VehicleSignalInterface interface may be extended to support notifications only
when a property value is in a given range; a degenerate case of this, where the upper and
lower bounds of the range are equal, would support notifications for property values
crossing a threshold. This would most likely be implemented by adding optional min and
max parameters to the VehicleSignalInterface.subscribe() method.

8.13 BULK RECORDING OF SENSOR DATA

This is a slightly niche use case for the moment, and can be handled by an application
bundle running an agent process which is subscribed to the relevant properties and
records them itself. This is less efficient than having the vehicle device daemon do it, as it
means more processes waking up for changes in sensor data, but avoids questions of
data formats to use and how and when to send bulk data between the vehicle device
daemon and the application bundle’s agent.

If the implementation of this is moved into the vehicle device daemon, the lifecycle of
recorded data must be considered: how space is allocated for the data’s storage, when and

51 http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-
unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

52 See the draft Compositor Security design.

http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

how the application bundle is woken to process the data, and what happens when the
allocated storage space is filled.

8.14 SECURITY

The vehicle device daemon acts as a privilege boundary between all bundles accessing
devices, between the bundles and the devices, and between each backend service.
Application bundles must request permissions to access sensor data in their manifest
(see the Applications Design document), and must separately request permissions to
interact with actuators. The split is because being able to control devices in the vehicle is
more invasive than passively reading from sensors — it is safety critical. A sensible
security policy may be to further split out the permissions in the manifest to require
specific permissions for certain types of sensors, such as cabin audio sensors or parking
cameras, which have the potential to be used for tracking the user. As adding more
permissions has a very low cost, the recommendation is to err on the side of finer-grained
permissions.

The manifest should additionally separate lists of device properties which the bundle
requires access to from device properties which it may access if they exist. This will allow
the Apertis store to hide bundles which require devices not supported by the user’s
vehicle.

From the permissions in the manifest, AppArmor and polkit rules restricting the
program’s access to the vehicle device daemon’s API can be generated on installation of
the bundle. See Security domains for rationale.

When interacting with the vehicle device daemon, a program is securely identified by its
D-Bus connection credentials, which can be linked back to its manifest — the vehicle
device daemon can therefore check which permissions the program’s bundle holds and
accept or reject its access request as appropriate. Therefore, the vehicle device daemon
acts as ‘the underlying operating system’ in controlling access, in the phrasing used by
the W3C specification53. It enforces the security boundary between each bundle accessing
devices, and between the intra- and inter-vehicle networks. The vehicle device daemon
forms a separate security domain from any of the applications.

Each backend service is a separate security domain, meaning that the vehicle device
daemon is in a separate security domain from the intra-vehicle networks.

The daemon may rate-limit API requests from each program in order to prevent one
program monopolising the daemon’s process time and effectively causing a denial of
service to other bundles by making API calls at a high rate. This could result from badly
implemented programs which poll sensors rather than subscribing to change
notifications from them, for example; as well as malicious bundles.

Due to its complexity, low level in the operating system, and safety criticality, the vehicle
device daemon requires careful implementation and auditing by an experienced developer
with knowledge of secure software development at the operating system level and
experience with relevant technologies (polkit, AppArmor, D-Bus).

53 http://www.w3.org/2014/automotive/vehicle_spec.html#security

http://www.w3.org/2014/automotive/vehicle_spec.html#security

The threat model under consideration is that of a malicious or compromised bundle which
can execute any of the D-Bus SDK APIs exposed by the daemon, with full manifest
privileges for sensor access. A second threat model is that of a compromised backend
service, which can execute any of the D-Bus hardware APIs exposed by the daemon.

8.14.1 SECURITY DOMAINS

There are various security technologies available in Apertis for use in restricting access to
sensors and actuators. See the Security Design for background on them; especially 9, §
Protecting the driver assistance system from attacks. These technologies can only be used
on the boundaries between security domains. In this design, each application bundle is a
single security domain (encompassing all programs in the bundle, including agents and
helper programs); the vehicle device daemon is another domain; and each of the backend
services are in a separate domain (including the vehicle networks they each use).

Application bundle and another application bundle or the rest of the system

Separation of the security domains of different application bundles from each other and
from the rest of the system is covered in the Applications and Security designs.

Application bundle and vehicle device daemon

The boundary between an application bundle and the vehicle device daemon is the
Sensors and Actuators SDK API, implemented by the daemon and exposed over D-Bus. The
bundle’s AppArmor profile will grant access to call any method on this interface if and only
if the bundle requests access to one or more devices in its manifest. Note that AppArmor
is not used to separate access to different sensors or actuators — it is not fine-grained
enough, and is limited to allowing or denying access to the API as a whole.

A separate set of polkit rules54 for the bundle control which devices the bundle is allowed
to access; these rules are generated from the bundle’s manifest, looking at the specific
devices listed. Given a set of polkit actions defined by the vehicle device daemon, these
rules should permit those actions for the bundle.

For example, the daemon could define the polkit actions:

• org.apertis.vehicle_device_daemon.EnumerateVehicles: To list the
available vehicles or subscribe to notifications of changes in the list.

• org.apertis.vehicle_device_daemon.EnumerateDevices: To list the
available devices on a given vehicle (passed as the vehicle variable on the action)
or subscribe to notifications of changes in the list.

• org.apertis.vehicle_device_daemon.ReadProperty: To read a property, i.e.
access a sensor, or subscribe to notifications of changes to the property value. The
vehicle ID and property names are passed as the vehicle and property variables
on the action.

• org.apertis.vehicle_device_daemon.WriteProperty: To write a property,

54 http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

i.e. operate an actuator. The vehicle ID, property name and new value are passed as
the vehicle, property and value variables on the action.

The default rules for all of these actions must be polkit.Result.NO.

If a bundle has access to any device, it is safe and necessary to grant it access to
enumerate all vehicles and devices (the Enumerate* actions above) — otherwise the
bundle cannot check for the presence of the devices it requires. Knowledge of which
devices are connected to the vehicle should not be especially sensitive — it is expected
that there will not be a sufficient variety of devices connected to a single vehicle to allow
fingerprinting of the vehicle from the device list, for example.

An application bundle, org.example.AccelerateMyMirror, which requests access to
the vehicle.throttlePosition.value property (a sensor) and the
vehicle.mirror.mirrorPan property (an actuator) would therefore have the following
polkit rule generated in /etc/polkit-1/rules.d/20-
org.example.AccelerateMyMirror.rules:

polkit.addRule (function (action, subject) {
if (subject.credentials != 'org.example.AccelerateMyMirror') {

/* This rule only applies to this bundle.
 * Defer to other rules to handle other bundles. */
return polkit.Result.NOT_HANDLED;

}

if (action.id == 'org.apertis.vehicle_device_daemon.EnumerateVehicles'
||

 action.id == 'org.apertis.vehicle_device_daemon.EnumerateDevices')
{

/* Always allow these. */
return polkit.Result.YES;

}

if (action.id == 'org.apertis.vehicle_device_daemon.ReadProperty' &&
 action.lookup ('property') == 'vehicle.throttlePosition.value') {

/* Allow access to this specific property. */
return polkit.Result.YES;

}

if (action.id == 'org.apertis.vehicle_device_daemon.WriteProperty' &&
 action.lookup ('property') == 'vehicle.mirror.mirrorPan') {

/* Allow access to this specific property,
 * with user authentication. */
return polkit.Result.AUTH_USER;

}

/* Deny all other accesses. */
return polkit.Result.NO;

});

In the rules, the subject is always the program in the bundle which is requesting access to
the device.

Open question: What is the exact security policy to implement regarding separation of
sensors and actuators? For example, bundle access to sensors could always be permitted
without prompting by returning polkit.Result.YES for all sensor accesses; but
actuator accesses could always be prompted to the user by returning
polkit.Result.AUTH_SELF. The choice here depends on the desired user experience.

Vehicle device daemon and a backend service

The boundary between the vehicle device daemon and one of its backend services is the
Sensors and Actuators hardware API, implemented by the daemon and exposed over D-
Bus. The backend service’s AppArmor profile will grant access to call any method on this
interface. Note that AppArmor is not used to grant or deny permissions to expose
particular properties — it is not fine-grained enough, and is limited to allowing or denying
access to the API as a whole.

In order to limit the potential for a compromised backend service to escalate its
compromise into providing malicious sensor data for any sensor on the system, each
backend service must install a file which lists the Vehicle Data properties it might
possibly ever provide to the vehicle device daemon. The vehicle device daemon must reject
properties from a backend service which are not in this list. The list must not be
modifiable by the backend service after installation (i.e. it must be read-only, readable by
the vehicle device daemon).

Furthermore, if a backend service is found to be exploitable after being deployed, it must
be possible for the vehicle device daemon to disable it. This is expected to typically happen
with backend services provided by application bundles, as opposed to those provided by
OEMs or third parties (as these should go through stricter review, and disabling them
would have a much larger impact). The vehicle device daemon must have a blacklist of
backend services which it never loads. It must check the credentials55 of D-Bus messages
from backend services against this blacklist. In order to support one (vulnerable) version
of a backend service being blacklisted, but not the next (fixed) version, the blacklist must
contain version numbers, which should be compared against the installed version number
of the backend service as listed in the system-wide application bundle manifest store.

Vehicle device daemon and the rest of the system

The vehicle device daemon itself must not be able to access any of the vehicle buses or
any networks. It must be run as a unique user, which owns the daemon’s binary, with its
DAC permissions set such that other users (except root) cannot run it. It must not have
access to any device files. See 9, Protecting the driver assistance system from attacks, of §
the Security design for more details.

55 Using GetConnectionCredentials, which returns an unforgeable identifier for the peer:
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials

http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials

Backend service and another backend service or the rest of the system

In order to guarantee it is the only program which can access a particular vehicle bus or
network, each backend service should run as a unique user. The service’s binary must be
owned by that user, with its DAC permissions set such that other users (except root)
cannot run it. Any device files which it uses for access to the underlying vehicle networks
must be owned by that user, with their DAC permissions set such that other users cannot
access them, and udev rules in place to prevent access by other users. If the backend
needs access to a (local) network interface to communicate with the vehicle network
buses, that interface must be put in a separate network namespace, and the
CLONE_NEWNET flag used when spawning the backend service to put it in that namespace.
This prevents the service from accessing other network interfaces; and prevents other
processes from accessing the buses. See 9, Protecting the driver assistance system from §
attacks, of the Security design for more details.

SDK emulator

Typically, it should not be possible for one program to have access to both the vehicle
device daemon’s SDK API and its hardware API (this access is controlled by AppArmor).
However, the SDK emulator is a special case which needs access to both — so either this
must be possible as a special case, or the SDK emulator must be split into a backend
service process and a UI process, which communicate via another D-Bus connection.

8.14.2 APERTIS STORE VALIDATION

Application bundles which request permissions to access devices must undergo
additional checks before being put on the Apertis store. This is especially important for
bundles which request access to actuators, as those bundles are then potentially safety
critical.

Checks for access to sensors

Suggested checks for bundles requesting read access to sensors:

• The bundle does not send privacy-sensitive data to services outside the user’s
control (for example, servers not operated by the user; see the User Data
Manifesto56), either via network transmission, logging to local storage, or other
means, without the user’s consent. Any data sent with the user’s consent must only
be sent to services which follow the User Data Manifesto. For example (this list is
not exhaustive):

◦ Tracking the vehicle’s movements.

◦ Monitoring the user’s conversations (audio recording).

• The bundle does not have access to uniquely identifiable information, such as a
vehicle identification number (VIN). Any exceptions to this would need stricter
review.

56 https://userdatamanifesto.org/

https://userdatamanifesto.org/

• The bundle clearly indicates when it is gathering privacy-sensitive data from
sensors. For example, a ‘recording’ light displayed in the UI when listening using a
microphone.

Checks for access to actuators

Suggested checks for bundles requesting write access to actuators:

• The bundle does not additionally have network access.

• Actuators are only operated while the vehicle is not driving. Any exceptions to this
would need even stricter review.

• Manual code review of the entire bundle’s source code by a developer with security
experience. The entire source code must be made available for review by the bundle
developer, as it is all run in the same security domain. For example (this list is not
exhaustive):

◦ Looking for ways the bundle could potentially be exploited by an attacker.

◦ Checking that the bundle cannot use the actuator inappropriately during normal
operation if it encounters unexpected circumstances. (For example, checking
that arithmetic bugs don’t exist which could cause an actuator to be operated at
a greater magnitude than intended by the bundle developer.)

Open question: The specific set of Apertis store validation checks for bundles which
access devices is yet to be finalised.

Checks for backend services

Suggested checks for backend services for the vehicle device daemon, whether they are
provided by an OEM, a third party or as part of an application bundle:

• The backend service does not additionally have network access.

• The backend service does not have write access to any of the file system except
devices it needs, and the D-Bus socket.

• The backend service cannot access any more device nodes than it needs to support
its devices.

• Manual code review of the entire bundle’s source code by a developer with security
experience. The entire source code must be made available for review by the bundle
developer, as it is all run in the same security domain. For example (this list is not
exhaustive):

◦ Looking for ways the backend service could potentially be exploited by an
attacker.

◦ Checking that the backend service cannot use any of its actuator
inappropriately during normal operation if it encounters unexpected
circumstances. (For example, checking that arithmetic bugs don’t exist which
could cause an actuator to be operated at a greater magnitude than intended by

the developer.)

• The backend service’s D-Bus service is only accessible by the vehicle device daemon
(as enforced by AppArmor).

• If other software is shipped in the same application bundle, it must be considered
to be part of the same security domain as the backend service, and hence subject to
the same validation checks.

• The backend service must pass the automated compliance test (section 8.3).

• The backend service must not expose any properties which are not supported by the
version of the vehicle device daemon which it targets as its minimum dependency
(see section 8.1 for information about the extension process).

8.15 SUGGESTED ROADMAP

Due to the large amount of work required to write a system like this from scratch, it is
worth exploring whether it can be developed in stages.

The most important parts to finalise early in development are the SDK and hardware APIs,
as these need to be made available to bundle developers and OEMs to develop bundles and
the backend services. There seems to be little scope for finalising these APIs in stages,
either (for example by releasing property access APIs first, then adding vehicle and device
enumeration), as that would result in early bundles which are incompatible with multi-
vehicle configurations.

Similarly, it does not seem to be possible to implement one of the APIs before the other.
Due to the fragmented nature of access to vehicle networks, the backend needs to be
written by the OEM, rather than relying on one written by Apertis for early versions of the
system.

Furthermore, the security implementation for the vehicle device daemon must be part of
the initial release, as it is safety critical.

One area where phased development is possible is in the set of properties itself — initial
versions of the daemon and backends could implement a small, core set of the properties
defined in the W3C Vehicle Data specification57, and future versions could expand that set
of properties as time is available to implement them. As each property is a public API, it
must be supported as part of the SDK one it has appeared in a released version of the
daemon, so it is important to design the APIs correctly the first time.

Similarly, the scope for backend services could be expanded over time. Initial releases of
the system could allow only backend services written by vehicle OEMs to be used; with
later releases allowing third-party backend services, then ones provided by installed
application bundles.

The emulator backend service (section 8.4) and any SDK hardware backend services
(section 8.5) should be implemented early on in development, as they should be relatively
simple, and having them allows application developers to start writing applications

57 http://www.w3.org/2014/automotive/data_spec.html

http://www.w3.org/2014/automotive/data_spec.html

against the service.

8.16 REQUIREMENTS

• 5.1, Enumeration of devices: The availability of known properties of the vehicle can
be checked through the Availability interface58. The W3C approach considers
properties, rather than devices, to be the enumerable items, but they are mostly
equivalent (see Properties vs devices).

• 5.2, Enumeration of vehicles: The availability of objects implementing the W3C
Vehicle interface on D-Bus is exposed using an interface like the D-Bus
ObjectManager API.

• 5.3, Retrieving data from sensors: Properties can be retrieved through the
VehicleInterface interface59. For high bandwidth sensors, or those with latency
requirements for the end-to-end connection between sensor and bundle, data is
transferred out of band (see High bandwidth or low latency sensors).

• 5.4, Sending data to actuators: Properties can be set through the
VehicleSignalInterface interface60. As with getting properties, data for high
bandwidth or low latency sensors is transferred out of band.

• 5.5, Network independence: The vehicle device daemon abstracts access to the
underlying buses, so bundles are unaware of it.

• 5.6, Bounded latency of processing sensor data: The vehicle device daemon should
have its scheduling configuration set so that it can provide latency guarantees for
the underlying buses.

• 5.7, Extensibility for OEMs: Extensions are standardised through Apertis and
released in the next version of the Sensors and Actuators API for use by the OEM.

• 5.8, Third-party backends: Backend services for the vehicle device daemon can be
installed as part of application bundles (either built-in or store bundles).

• 5.9, Third-party backend validation: Backend services must be validated before
being installed as bundles (see Checks for backend services).

• 5.10, Notifications of changes to sensor data: Property changes are notified via a
publish–subscribe interface on VehicleSignalInterface61. Notification
thresholds are supported by optional parameters on that interface.

• 5.11, Uncertainty bounds: The W3C API is extended to include uncertainty bounds for
measurements.

• 5.12, Failure feedback: Through its use of Promises62, the API allows for failure to set

58 http://www.w3.org/2014/automotive/vehicle_spec.html#h2_data-availability
59 http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehicleinterface-interface
60 http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehiclesignalinterface-interface
61 http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehiclesignalinterface-interface
62 http://www.w3.org/TR/2013/WD-dom-20131107/#promises

http://www.w3.org/TR/2013/WD-dom-20131107/#promises
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehiclesignalinterface-interface
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehiclesignalinterface-interface
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_vehicleinterface-interface
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_data-availability

a property.

• 5.13, Timestamping: The W3C API is extended to include timestamps for
measurements.

• 5.14, Triggering bundle activation: Programs are woken by subscriptions to property
changes (see Registering triggers and actions).

• 5.15, Bulk recording of sensor data: Not currently implemented, but may be
implemented in future as a straightforward extension to the API. See Bulk recording
of sensor data.

• 5.16, Sensor security: Access to the Sensors and Actuators API is controlled by an
AppArmor profile generated from permissions in the manifest. Access to individual
sensors is controlled by a polkit rule generated from the same permissions. See
Security.

• 5.17, Actuator security: As with 5.16; sensors and actuators are listed and controlled
by the polkit profile separately.

• 5.18, App store knowledge of device requirements: As devices required by an
application bundle are listed in the bundle’s manifest (see Security), the Apertis
store knows whether the bundle is supported by the user’s vehicle.

• 5.19, Accessing devices on multiple vehicles: Each vehicle is exposed as a separate
D-Bus object, each implementing the W3C Vehicle interface.

• 5.20, Third-party accessories: Properties for third-party accessories must be
standardised through Apertis and exposed as separate interfaces on the vehicle
object on D-Bus.

• 5.21, SDK hardware support: SDK hardware should be supported through a separate
development-only backend service written specifically for that hardware.

9 OPEN QUESTIONS
1. 8.2: The exact definition of the SDK API is yet to be finalised. It should include

support for accessing multiple properties in a single IPC round trip, to reduce IPC
overheads.

2. 8.2.1: The exact means for aggregating each property in the Vehicle Data
specification is yet to be determined.

3. 8.11: In addition to the current entries in ZonePosition, what other zone strings
would be useful? ‘internal’ and ‘external’?

4. 8.14.1: What is the exact security policy to implement regarding separation of
sensors and actuators? For example, bundle access to sensors could always be
permitted without prompting by returning polkit.Result.YES for all sensor
accesses; but actuator accesses could always be prompted to the user by returning
polkit.Result.AUTH_SELF. The choice here depends on the desired user
experience.

5. 8.14.2: The specific set of Apertis store validation checks for bundles which access
devices is yet to be finalised.

10 SUMMARY OF RECOMMENDATIONS
As discussed in the above sections, we recommend:

• Implementing a vehicle device daemon which exposes the W3C Vehicle Information
Access API; this will probably need to be developed from scratch.

• Documenting the hardware API and distributing it to OEMs, third parties and
application developers along with a compliance test suite and a common utility
library to allow them to build backend services for accessing vehicle networks.

• Documenting the SDK API and distributing it to application bundle developers along
with a validation suite and simulator to allow them to build programs which use the
API.

• Provide example trip logs for journeys to test against and a method for replaying
them via the vehicle device daemon, so application developers can test their
applications.

• Defining how to aggregate multiple values of each property in the W3C Vehicle Data
API.

• Extending the W3C Vehicle Information Access API to expose uncertainty and
timestamp data for each property.

• Extending the W3C Vehicle Information Access API to expose multiple vehicles and
notify of changes using an interface like D-Bus ObjectManager.

• Extending the W3C Vehicle Information Access API to support a range of interest for
property change notifications.

• Extending the W3C Vehicle Information Access API to define more zone positions for
describing the physical location of devices in the vehicle.

• Adding a property to the application bundle manifest listing which device
properties programs in the bundle may access if they exist.

• Adding a property to the application bundle manifest listing which device
properties programs in the bundle require access to.

• Extending the Apertis store validation process to include relevant checks when
application bundles request permissions to access sensors (privacy sensitive) or
actuators (safety critical). Or when application bundles request permissions to
provide a vehicle device daemon backend service (safety critical).

• Modifying the Apertis software installer to generate AppArmor rules to allow D-Bus
calls to the vehicle device daemon if device properties are listed in the application
bundle manifest.

• Modifying the Apertis software installer to generate polkit rules to grant an
application bundle access to specific devices listed in the application bundle
manifest.

• Implementing and auditing strict DAC and MAC protection on the vehicle device

daemon and each of its backend services, and identity checks on all calls between
them.

• Defining a feedback and standardisation process for OEMs to request new
properties or device types to be supported by the vehicle device daemon’s API.

11 APPENDIX: W3C API
For the purposes of completeness, the W3C Vehicle Information Access API63 is reproduced
below. This is the version from the Final Business Group Report 24 November 2014, and
does not include the Vehicle Data specification64 for brevity. The API is described as
WebIDL65, and partial interfaces have been merged.

partial interface Navigator {
 readonly attribute Vehicle vehicle;
};

[NoInterfaceObject]
interface Vehicle {
 /* Extended with properties by the Vehicle Data specification. */
};

enum ZonePosition {
 "front",
 "middle",
 "right",
 "left",
 "rear",
 "center"
};

interface Zone {
 attribute DOMString[] value;
 readonly attribute Zone driver;
 boolean equals (Zone zone);
 boolean contains (Zone zone);
};

callback VehicleInterfaceCallback = void(object value); ();

callback AvailableCallback = void (Availability available) ();

enum VehicleError {
 "permission_denied",
 "invalid_operation",
 "timeout",
 "invalid_zone",
 "unknown"
};

[NoInterfaceObject]
interface VehicleInterfaceError {

63 http://www.w3.org/2014/automotive/vehicle_spec.html
64 http://www.w3.org/2014/automotive/data_spec.html
65 http://www.w3.org/TR/WebIDL/

http://www.w3.org/2014/automotive/vehicle_spec.html#widl-Navigator-vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#idl-def-Vehicle
http://www.w3.org/TR/WebIDL/
http://www.w3.org/2014/automotive/data_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html

 readonly attribute VehicleError error;
 readonly attribute DOMString message;
};

interface VehicleInterface {
 Promise get (optional Zone zone);
 readonly attribute Zone[] zones;

 Availability availableForRetrieval (DOMString attributeName);
 readonly attribute boolean supported;
 short availabilityChangedListener (AvailableCallback callback);
 void removeAvailabilityChangedListener (short handle);

 Promise getHistory (Date begin, Date end, optional Zone zone);
 readonly attribute boolean isLogged;
 readonly attribute Date ? from;
 readonly attribute Date ? to;
};

[NoInterfaceObject]
interface VehicleConfigurationInterface : VehicleInterface {
};

[NoInterfaceObject]
interface VehicleSignalInterface : VehicleInterface {
 Promise set (object value, optional Zone zone);
 unsigned short subscribe (VehicleInterfaceCallback callback, optional
Zone zone);
 void unsubscribe (unsigned short handle);

 Availability availableForSubscription (DOMString attributeName);
 Availability availableForSetting (DOMString attributeName);
};

enum Availability {
 "available",
 "not_supported",
 "not_supported_yet",
 "not_supported_security_policy",
 "not_supported_business_policy",
 "not_supported_other"
};

	Document Change Log
	1 Introduction
	2 Terminology and concepts
	2.1 Vehicle
	2.2 Intra-vehicle network
	2.3 Inter-vehicle network
	2.4 Sensor
	2.5 Actuator
	2.6 Device

	3 Use cases
	3.1 Augmented reality parking
	3.2 Virtual mechanic
	3.2.1 Trailer

	3.3 Petrol station finder
	3.4 Sightseeing application bundle
	3.4.1 Basic model vehicle

	3.5 Changing bundle functionality when driving at speed
	3.6 Changing audio volume with vehicle or cabin noise
	3.7 Night mode
	3.8 Weather feedback or traffic jam feedback
	3.9 Insurance bundle
	3.10 Driving setup bundle
	3.11 Odour detection
	3.12 Air conditioning control
	3.12.1 Automatic window feedback

	3.13 Agricultural vehicle
	3.14 Roof box
	3.15 Truck installations
	3.16 Compromised application bundle
	3.17 Ethernet intra-vehicle network
	3.18 Development against the SDK

	4 Non-use-cases
	4.1 Bluetooth wrist watch and the Internet of Things
	4.2 Car-to-car and car-to-infrastructure communications
	4.3 Buddied and vehicle fleet communications

	5 Requirements
	5.1 Enumeration of devices
	5.2 Enumeration of vehicles
	5.3 Retrieving data from sensors
	5.4 Sending data to actuators
	5.5 Network independence
	5.6 Bounded latency of processing sensor data
	5.7 Extensibility for OEMs
	5.8 Third-party backends
	5.9 Third-party backend validation
	5.10 Notifications of changes to sensor data
	5.11 Uncertainty bounds
	5.12 Failure feedback
	5.13 Timestamping
	5.14 Triggering bundle activation
	5.15 Bulk recording of sensor data
	5.16 Sensor security
	5.17 Actuator security
	5.18 App store knowledge of device requirements
	5.19 Accessing devices on multiple vehicles
	5.20 Third-party accessories
	5.21 SDK hardware support

	6 Background on intra-vehicle networks
	7 Existing sensor systems
	7.1 W3C Vehicle Information Access API
	7.2 GENIVI Web API Vehicle
	7.3 Apple HomeKit
	7.4 Apple External Accessory API
	7.5 iOS CarPlay
	7.6 Android Auto
	7.7 MirrorLink
	7.8 Android Sensor API
	7.9 Automotive Message Broker
	7.10 AllJoyn

	8 Approach
	8.1 Vehicle device daemon
	8.2 Hardware and app APIs
	8.2.1 Interactions between backend services
	8.2.2 Recommended hardware API design
	Management API
	Property API

	8.3 Hardware API compliance testing
	8.4 SDK API compliance testing and simulation
	8.5 SDK hardware
	8.6 Trip logging of sensor data
	8.7 Properties vs devices
	8.8 Property naming
	8.9 High bandwidth or low latency sensors
	8.10 Timestamps and uncertainty bounds
	8.11 Zones
	8.12 Registering triggers and actions
	8.13 Bulk recording of sensor data
	8.14 Security
	8.14.1 Security domains
	Application bundle and another application bundle or the rest of the system
	Application bundle and vehicle device daemon
	Vehicle device daemon and a backend service
	Vehicle device daemon and the rest of the system
	Backend service and another backend service or the rest of the system
	SDK emulator

	8.14.2 Apertis store validation
	Checks for access to sensors
	Checks for access to actuators
	Checks for backend services

	8.15 Suggested roadmap
	8.16 Requirements

	9 Open questions
	10 Summary of recommendations
	11 Appendix: W3C API

