
Apertis Inter-Domain
Communication

Design

Author: Philip Withnall
Contributors: Simon McVittie, Sjoerd Simons
Version: 0.2.1
Status: Draft
Date: 2016-02-11
Last Reviewer: Simon McVittie

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.2.1 2016-02-11 • Minor clarifications and typo fixes.
• Expand design for opening data connections.

0.2.0 2016-02-05 • Clarify control versus data streams.
• Clarify use cases covering race conditions in

communications and temporary communications
problems.

• Clarify attack capabilities of the vehicle’s owner, and the
requirements on a hardware root of confidentiality for
the system.

• Add requirements for tamper evidence and consistent
attack effort.

• Add recommendations for audio and video handling.
• Add appendices covering D-Bus licencing, D-Bus

performance, software versus hardware encryption, and
audio and video decoding performance.

• Clarify expectations for the export layer.
• Add a section on debuggability of the system.
• Improve the diagrams.

0.1.1 2015-12-19 • Clarifications and expansions of some points.

0.1.0 2015-12-16 • New document to summarise background research and
propose overall architecture.

Table of Contents
 Document Change Log..2
1 Introduction..7
2 Terminology and concepts..8

2.1 Automotive domain...8
2.2 Consumer-electronics domain..8
2.3 Trusted path..8
2.4 Control stream..8
2.5 Data stream...9
2.6 Traffic control..9

3 Use cases...10
3.1 Standalone setup...10
3.2 Basic virtualised setup..10
3.3 Separate CPUs setup...10
3.4 Separate boards setup...10
3.5 Separate boards setup with other devices...11
3.6 Multiple CE domains setup...11
3.7 Touchscreen events..11
3.8 Wi-Fi access..11
3.9 Bluetooth access...12
3.10 Audio transfer...12
3.11 Video decoding..12

3.11.1 Video or audio decoder bugs..12
3.12 Tinkering vehicle owner on the network..13
3.13 Tinkering vehicle owner on the boards...13
3.14 Support multiple AD operating systems...13
3.15 Before-market CD upgrades..13
3.16 After-market CD upgrades..13
3.17 Testability..14
3.18 Malicious CD..14
3.19 After-market upgrade of a domain...14
3.20 Power cycle independence of domains (CD down)...14
3.21 Power cycle independence of domains (AD down, single screen)...15
3.22 Power cycle independence of domains (AD down, multiple screens).......................................15
3.23 Temporary communications problem..15
3.24 New version of AD software..16
3.25 New version of AD interfaces..16
3.26 Unsupported AD interfaces..16
3.27 Contacts sharing...17
3.28 Protocol compatibility...17

3.28.1 kdbus protocol compatibility...17
3.29 Navigation system..17
3.30 Marshalling resource usage..17

3.31 Feedback for malicious applications...17
3.32 Compromised CD with delayed fix..18
3.33 Denial of service through flooding..18
3.34 Malicious CD UI..18
3.35 Plug-and-play CD device...18
3.36 Connecting an SDK to a development vehicle..19

3.36.1 Connecting an SDK to a production vehicle..19
4 Security model..20

4.1 Attackers...20
4.1.1 Vehicle’s owner..20
4.1.2 Passenger..20
4.1.3 Third parties...20
4.1.4 Trusted dealer...21

4.2 Security domains..21
4.3 Security model...22

5 Non-use-cases...23
5.1 Production CE domain used in multiple configurations...23

6 Requirements...24
6.1 Separated transport layer...24

6.1.1 Transport to SDK APIs..24
6.1.2 Transport over virtio..24
6.1.3 Transport over a private Ethernet link..24
6.1.4 Transport over a private Ethernet link to a development vehicle..24
6.1.5 Transport over a shared Ethernet link..24

6.2 Message integrity and confidentiality in transport layer..24
6.3 Reliability and error checking in transport layer...25
6.4 Mutual authentication between domains..25
6.5 Separate authentication for developer and production mode devices....................................25
6.6 Individually addressed domains...25
6.7 Traffic control for latency..25
6.8 Traffic control for bandwidth..25
6.9 Traffic control for frequency..26
6.10 Separation of control and data streams..26
6.11 No untrusted access to AD hardware...26
6.12 Trusted path for users to update the CD operating system...26
6.13 Safety limits on AD APIs...27
6.14 Rate limiting on control messages..27
6.15 Ignore unrecognised messages..27
6.16 Portable transport layer...27
6.17 Support push mode and pull mode communications..28
6.18 OEM AD integration API..28
6.19 Flexibility in OEM AD integration API...28
6.20 Inflexibility in OEM AD integration API...28
6.21 Stability in inter-domain communications protocol...28
6.22 Testability of protocols..29
6.23 Testability of protocol parsers and writers..29

6.24 Testability of processes..29
6.25 CD system services separated from transport layer...29
6.26 No dependency on CD specific hardware...29
6.27 Immediate error response if service on peer is unavailable..30
6.28 Immediate error response if peer is unavailable...30
6.29 Timeout error response if peer does not respond..30
6.30 All inter-domain communications APIs are asynchronous..30
6.31 Reconnect to peer as soon as it is available..31
6.32 External domain watchdog..31
6.33 Reporting system for malicious applications..31
6.34 Ability to disable the consumer–electronics domain...32
6.35 Tamper evidence...32
6.36 No global keys in vehicles..32

7 Existing inter-domain communication systems..33
8 Approach...34

8.1 Overall architecture..34
8.2 Security domains..36
8.3 Protocol design..37

8.3.1 IPsec versus TLS..37
8.3.2 Configuration designs...39
8.3.3 Addressing and peer discovery...41
8.3.4 Encryption...41
8.3.5 Control protocol...42
8.3.6 Data connections...43

8.4 Traffic control..44
8.5 Protocol library and inter-domain services...45
8.6 Automotive domain export layer...46
8.7 Consumer–electronics domain adapter layer..47
8.8 Interaction of the export and adapter layers...47

8.8.1 Initial deployment...48
8.8.2 CD is upgraded, AD remains unchanged...48
8.8.3 AD is upgraded, CD remains unchanged...48
8.8.4 CD is upgraded again...48

8.9 Flow for a given SDK API call..49
8.10 Trusted path to the AD..49
8.11 Developer mode..50
8.12 Mock SDK implementation..50
8.13 Debuggability...51
8.14 External watchdog..52
8.15 Tamper evidence and hardware encryption..53
8.16 Disabling the CE domain..53
8.17 Reporting malicious applications..54
8.18 Suggested roadmap...55
8.19 Requirements..55

9 Open questions...56
10 Summary of recommendations...57

11 Appendix: D-Bus components and licensing...58
11.1 Licensing..58

12 Appendix: D-Bus performance..59
13 Appendix: Software versus hardware encryption...60

13.1 Software encryption (without encryption acceleration instructions).......................................60
13.2 Software encryption (with encryption acceleration instructions)..61
13.3 Secure cryptoprocessor..61
13.4 Hardware security module..62
13.5 Conclusion...62

14 Appendix: Audio and video decoding...63

1 INTRODUCTION
This documents a suggested design for an inter-domain communication system, which
exports the services from a trusted domain (the automotive domain) to an untrusted one
(the consumer-electronics domain), accounting for a variety of possible hardware
configurations of the two domains.

The major considerations with an inter-domain communication system are:

• Security. The purpose of having two separate domains is for security, so that
untrusted code (application bundles) can be run in one domain while minimising
the attack surface of the safety-critical systems which drive the car.

• Flexibility for different hardware configurations. The two domains may be running in
one of many configurations: virtualised under a hypervisor; on separate CPUs on the
same board; on separate boards connected by a private in-vehicle network; or as
separate boards connected to a larger in-vehicle network with unrelated peers on it.

• Flexibility for services exposed. The services exposed by the automotive domain are
dependent on the vendor which implemented the automotive domain, and their
update and enhancement cycle may differ from that of the consumer-electronics
domain.

• Asynchronism and race conditions. This is a distributed system, and hence is
subject to all of the challenges typical of distributed systems1.

1 https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

2 TERMINOLOGY AND CONCEPTS

2.1 AUTOMOTIVE DOMAIN

The automotive domain (AD) is a security domain which runs automotive processes, with
direct access to hardware such as audio output or the in-vehicle bus (for example, a CAN
bus or similar).

In some literature this domain is known as the ‘blue world’. This document will
consistently use the term automotive domain or AD.

2.2 CONSUMER-ELECTRONICS DOMAIN

The consumer-electronics domain (CE domain; CD) is a security domain which runs the
user’s infotainment processes, including downloaded applications and processing of
untrusted content such as downloaded media. Apertis is one implementation of the CE
domain.

In some literature this domain is known as the ‘red world’, ‘infotainment domain’ or ‘IVI
domain’. This document will consistently use the term consumer-electronics domain or CE
domain or CD.

2.3 TRUSTED PATH

A trusted path2 is an end-to-end communications channel from the user to a specific
software component, which the user can be confident has integrity, and is addressing the
component they expect. This encompasses technical security measures, plus unforgeable
UI indications of the trusted path.

An example of a trusted path is the old Windows login screen, which required the user to
press Ctrl+Alt+Delete to open the login dialogue. If a malicious application was
impersonating the login dialogue, pressing Ctrl+Alt+Delete would open the task manager
instead of the login dialogue, exposing the subversion.

In the context of Apertis, an example situation calling for a trusted path is when the user
needs to interact with a UI provided by the AD. They must be sure that this UI is not being
forged by a malicious application running in the CD.

2.4 CONTROL STREAM

A control stream is a network connection which transmits low bandwidth, latency
insensitive messages which typically contain metadata about data being transferred in a
data stream. In networking, it is sometimes known as the control plane.

A control stream for one protocol may be treated as a data stream if it is being carried by a
higher layer (or wrapper) protocol, as the control data in the stream is meaningless to the
higher layer protocol.

2 https://en.wikipedia.org/wiki/Trusted_path

https://en.wikipedia.org/wiki/Trusted_path

If a designer is concerned about whether a particular stream’s performance requirements
make it suitable for running as a control stream, it almost certainly is not a control
stream, and should be treated as a data stream. A new control protocol should be built to
carry more limited metadata about it.

A control stream can operate without a data stream (for example, if there is no
performance-sensitive data to transmit).

2.5 DATA STREAM

A data stream is a network connection which transmits the data referred to by a control
stream. This data may be high bandwidth or latency sensitive, or it may be neither. In
networking, it is sometimes known as the data plane.

A data stream cannot operate without an associated control stream (which carries its
metadata).

2.6 TRAFFIC CONTROL

Traffic control (or bandwidth management) is the term for a variety of techniques3 for
measuring and controlling the connections on a network link, to try and meet the quality
of service requirements for each connection, in terms of bandwidth and latency.

3 https://en.wikipedia.org/wiki/Bandwidth_management

https://en.wikipedia.org/wiki/Bandwidth_management

3 USE CASES
A variety of use cases which must be satisfied by an inter-domain communication system
are given below. Particularly important discussion points are highlighted at the bottom of
each use case.

All of these use cases are relevant to an inter-domain communication system, but some of
them (for example, 3.11.1) may equally well be solved by other components in the system.

3.1 STANDALONE SETUP

An app-centric consumer electronics domain (CD) is running in a virtual machine on a
developer’s laptop, and they are using it to develop an application for Apertis. There is no
automotive domain (AD) for this CD to run against, but it must provide all the same
services via its SDK APIs as the CD running in a vehicle which has an Apertis device. The CD
must run without an accompanying AD in this configuration.

3.2 BASIC VIRTUALISED SETUP

An embedded automotive domain (AD) and an app-centric consumer electronics domain
(CD) are running as separate virtualised operating systems under a hypervisor, in order to
save costs on the bill of materials by only having one board and CPU. The AD has access to
the underlying physical hardware; the CD does not. The two domains have a high
bandwidth connection to each other (for example, Ethernet, USB, PCI Express or virtio). The
two domains need to communicate so that the CD can access the hardware controlled by
the AD.

3.3 SEPARATE CPUS SETUP

The AD is running on one CPU, and the CD is running on another CPU on the same board.
The two CPUs have separate memory hierarchies. They maybe using separate
architectures or endianness. The AD has access to all of the underlying physical hardware;
the CD only has access to a limited number of devices, such as its own memory and some
kind of high bandwidth connection to the AD (for example, Ethernet, USB, or PCI Express).
The two domains need to communicate so that the CD can access the hardware controlled
by the AD.

3.4 SEPARATE BOARDS SETUP

The AD is running on one mainboard, and the CD is running on another mainboard, which
is physically separate from the first. They may be using separate architectures or
endianness. The two boards are connected by some kind of vehicle network (for example,
Ethernet; but other technologies could be used). There are no other devices on this
network. The vehicle owner (and any other attacker) might have physical access to this
network. The AD has access to various devices which are connected to its board and not to
the CD’s board. The two domains need to communicate so that the CD can access the
hardware controlled by the AD.

3.5 SEPARATE BOARDS SETUP WITH OTHER DEVICES

The AD is running on one mainboard, and the CD is running on another mainboard, which
is physically separate from the first. They may be using separate architectures or
endianness. The two boards are connected by some kind of vehicle network (for example,
Ethernet; but other technologies could be used). There are many other devices on this
network, which are addressable but whose traffic is irrelevant to the CD–AD connection (for
example, a telematics modem, or a high-end amplifier). The vehicle owner (and any other
attacker) might have physical access to this network. The AD has access to various
devices which are connected to its board and not to the CD’s board. The two domains need
to communicate so that the CD can access the hardware controlled by the AD.

(Note: This is a much lower priority than other setups, but should still be considered as part of the
overall design, even if the code for it will be implemented as a later phase.)

3.6 MULTIPLE CE DOMAINS SETUP

The AD is running on one mainboard. Multiple CE domains are running, each on a separate
mainboard, each physically separate from each other and from the AD. The boards are
connected by some kind of vehicle network (for example, Ethernet; but other technologies
could be used). There are many other devices on this network, which are addressable but
whose traffic is irrelevant to the CD–AD connections (for example, a telematics modem, or
a high-end amplifier). The vehicle owner (and any other attacker) might have physical
access to this network. The AD has access to various devices which are connected to its
board and not to the CDs’ boards. Each CE domain needs to communicate with the AD so
that it can access the hardware controlled by the AD.

(Note: This is a much lower priority than other setups, but should still be considered as part of the
overall design, even if the code for it will be implemented as a later phase.)

3.7 TOUCHSCREEN EVENTS

The touchscreen hardware is controlled by the AD, but content from the CD is displayed on
it. In order to interact with this, touch events which are relevant to content from the CD
must be forwarded from the AD to the CD. Users expect a minimal latency for touch screen
event handling. Touchscreen events must continue to be delivered reliably and on time
even if there is a large amount of bandwidth being consumed by other inter-domain
communications between AD and CD.

3.8 WI-FI ACCESS

The Wi-Fi hardware is controlled by the AD, but the CD needs to use it for internet access,
including connecting to a network. The Wi-Fi device can return data at high bandwidth, but
also has a separate control channel. The control channel always needs to be available,
even if traffic is being dropped due to bandwidth limitations in the inter-domain
communication channel.

As the Wi-Fi is used for general internet access, sensitive information might be transferred
between domains (for example, authentication credentials for a website the user is

logging in to). Attackers who are snooping the inter-domain connection must not be able
to extract such sensitive data from the inter-domain communications link.

(Note that they may still be able to extract sensitive data from insecure connections over the
wireless connection itself, or elsewhere in transit outside the vehicle; so any solution here is the best
mitigation we can manage for the problem of a website being insecure.)

3.9 BLUETOOTH ACCESS

The Bluetooth hardware might be attached to the AD hardware. The CD needs to be able to
send data bi-directionally to other Bluetooth devices, and also needs to be able to control
the Bluetooth device, controlling pairing and other functions of the Bluetooth hardware.

3.10 AUDIO TRANSFER

The audio amplifier hardware might be attached to the AD hardware, or might be set up as
a separate hardware amplifier attached to the in-vehicle network. The CD needs to be able
to send multiple streams of decoded audio output to the AD, to be mixed with audio
output from the AD according to some prioritisation logic. Metadata needs to be sent
alongside the audio, such as track names or timing information. Audio output needs
predictable latency output, and for video conferencing it needs low latency as well;
conversely, some level of packet loss is acceptable for audio traffic.

3.11 VIDEO DECODING

There might be a specific hardware video decoder attached to the AD hardware, which the
CD operating system wishes to use for offloading decoding of trusted or untrusted video
content. This is high bandwidth, but means that the output from the video decoder could
potentially be directed straight onto a surface on the screen.

(See appendix 14 for a discussion of options for video and audio decoding.)

3.11.1 VIDEO OR AUDIO DECODER BUGS

The CD has a software video or audio decoder for a particular video or audio codec, and a
security critical bug is found in this decoder4, which could allow malicious video or audio
content to gain arbitrary code execution privileges when it’s decoded. An update for the
Apertis operating system is released which fixes this bug, and users need to apply it to
their vehicles. To reduce the window of opportunity for exploitation, this update has to be
applied by the vehicle owner, rather than taking the vehicle into a garage (which could
take weeks).

(Note: This means we cannot securely support decoding untrusted video or audio content in the AD,
due to its slow software update cycle, unless we use a hardware video decoder which is specifically
designed to cope with malicious inputs.)

4 For example, like the series of exploitable bugs which affected the ‘secure’ media decoding library on
Android in 2015, https://en.wikipedia.org/wiki/Stagefright_%28bug%29

https://en.wikipedia.org/wiki/Stagefright_(bug)

3.12 TINKERING VEHICLE OWNER ON THE NETWORK

The owner of a vehicle containing an Apertis device likes to tinker with it, and is probing
and injecting signals on the connection between the AD and CD, or even replacing the CD
completely with a device under their control. They should not be able to make the
automotive domain do anything outside its normal operating range; for example,
uncontrolled acceleration, or causing services in the domain to crash or shut down.

The tampering must be detectable by the vendor when the vehicle is serviced or
investigated after an accident.

3.13 TINKERING VEHICLE OWNER ON THE BOARDS

The owner of a vehicle containing an Apertis device likes to tinker with it, and has gained
access to the bootloaders and storage for both the AD and CD boards. They have managed
to add some custom software to the CD image, which is now sending messages to the AD
which it does not expect. Or vice-versa. The domain receiving the messages must not
crash, must ignore invalid messages, and must not cause unsafe vehicle behaviour.

The tampering must be detectable by the vendor when the vehicle is serviced or
investigated after an accident.

(Note that secure bootloading itself is a separate topic.)

3.14 SUPPORT MULTIPLE AD OPERATING SYSTEMS

The OEM for a vehicle wants to choose the operating system used in the AD — for example,
it might be GENIVI Linux, or QNX, or something else. There is limited opportunity to modify
this operating system to implement Apertis-specific features. Whichever CD system is
installed needs to interface to it. Each AD operating system may expose its underlying
hardware and services with a variety of different non-standardised APIs which use push-
and pull-style APIs for transferring data. The OEM wishes to be provided with an inter-
domain communication library to integrate into their choice of AD operating system,
which will provide all the functionality necessary to communicate with Apertis as the CD
operating system.

3.15 BEFORE-MARKET CD UPGRADES

The OEM for a vehicle has chosen a specific version of an operating system for their AD,
and has initially released their vehicle with Apertis 15.09 on the CD. For the latest
incremental version of this vehicle, they want to upgrade the CD to use Apertis 16.06. The
OS in the AD cannot be changed, due to having stricter stability and testing requirements
than the CD.

3.16 AFTER-MARKET CD UPGRADES

A user has bought a vehicle which runs Apertis 15.09 in its CD. Apertis 16.06 is released by
their car vendor, and their garage offers it as an upgrade to the user as part of their next
car service. The garage performs this software upgrade to the CD, without having to touch

the AD. It verifies that the system is operational, and returns the car to the user, who now
has access to all the new features in Apertis 16.06 which are supported by their vehicle’s
hardware.

3.17 TESTABILITY

When developing a new vehicle, an OEM wants to iterate quickly on changes to the CD, but
also wants to test them thoroughly for compatibility against a specific AD version, to
ensure that the two domains will work together. They want this testing to include a
number of valid and invalid conversations between the CD and AD, to ensure that the two
domains implement error handling (and hence a large part of their security) correctly.

3.18 MALICIOUS CD

Somehow, a third party application installed onto the CD manages to compromise a
system service and gain arbitrary code execution privileges in the CD. It uses these
privileges to send malicious messages to the AD. From the user’s point of view, this could
result in a loss of IVI functionality, and unexpected behaviour from vehicle actuators, but
must not result in loss of control of the vehicle.

3.19 AFTER-MARKET UPGRADE OF A DOMAIN

A user has bought a vehicle containing a low-end Apertis device. They wish to upgrade to a
more fully-featured Apertis device, and this hardware upgrade is offered by their garage.
The garage performs the upgrade, which replaces the existing CD hardware with a new
separate CD board. If the existing hardware combined the AD and CD on a single board or
virtualised processor, the entire board is replaced with two new, separate boards, one for
each domain (though as this is a complex operation, some garages or vendors might not
offer it). If the existing hardware already had separate boards for the two domains, only the
CD board is upgraded — this may be a service offered by all garages.

3.20 POWER CYCLE INDEPENDENCE OF DOMAINS (CD DOWN)

Due to a bug, the CD crashes. The AD must not crash, and must continue to function safely.
It may display an error message to the user, and the user may lose unsaved data. Once the
CD restarts, the AD should reconnect to it and reestablish a normal user interface. The CD
should reboot quickly and the cross-domain state be restored as much as reasonable once
restarted.

Any partially-complete inter-domain communications must error out rather than
remaining unanswered indefinitely.

The same situation applies if both domains are booting simultaneously, but the CD is
slower to boot than the AD, for example — the AD will be up before the CD, and hence must
deal with not being able to communicate with it. See also use case 3.35.

3.21 POWER CYCLE INDEPENDENCE OF DOMAINS (AD DOWN, SINGLE
SCREEN)

On a system where the AD and CD are sharing a single screen, if the AD crashes, the CD
must not crash, and may gracefully shut down, and only restart once the AD has finished
rebooting. The AD should reboot quickly and the cross-domain state be restored as much
as reasonable once restarted

Any partially-complete inter-domain communications must error out rather than
remaining unanswered indefinitely.

The same situation applies if both domains are booting simultaneously, but the AD is
slower to boot than the CD, for example — the CD will be up before the AD, and hence must
deal with not being able to communicate with it. See also use case 3.35.

3.22 POWER CYCLE INDEPENDENCE OF DOMAINS (AD DOWN, MULTIPLE
SCREENS)

On a system with multiple output screens, if the AD crashes, the CD must not crash, and
should continue to run on all its screens, as another user may be using the CD (without
requiring any functionality from the AD) on one of the screens. Once the AD restarts, the CD
should reconnect to it and reestablish a normal user interface on all screens. The AD
should reboot quickly and the cross-domain state be restored as much as reasonable once
restarted.

Any partially-complete inter-domain communications must error out rather than
remaining unanswered indefinitely.

The same situation applies if both domains are booting simultaneously, but the AD is
slower to boot than the CD, for example — the CD will be up before the AD, and hence must
deal with not being able to communicate with it. See also use case 3.35.

3.23 TEMPORARY COMMUNICATIONS PROBLEM

There is a temporary communications problem between a service on the AD and its
counterpart on the CD. Either:

• The service (on the AD or CD) has crashed.

• There is a problem with the physical connection between the domains, such as
dropped packets due to congestion; but both domains are still running fine.

• The entire domain or its inter-domain communications service has crashed.

The different situations can be detected by the parts of the stack which are still working

If a service has crashed, the inter-domain communication service should return an
appropriate error code to the other domain, which could propagate the error to a calling
application, or wait for the other domain to restart that service and try again.

If there is packet loss, the reliability in the inter-domain communication protocol should
cause the lost packets to be re-sent. Services should wait for that to happen. If the

communications problem continues longer than a timeout, the domains must assume
that each other have crashed and behave accordingly.

If a domain has crashed, the other domain must wait for it to be restarted via its
watchdog, as in use case 3.20.

In all cases, the domain which is still running must not shut down or enter a ‘paused’
state, as that would allow denial of service attacks.

3.24 NEW VERSION OF AD SOFTWARE

An OEM has released a vehicle with version A of their AD operating system, and version
15.06 of Apertis running in the CD. For the next minor update to their vehicle, the OEM has
made a number of changes to the underlying AD software, but not to its external
interfaces. They wish to keep the same version of Apertis running in the CD and release the
vehicle using this version B of their AD operating system, and version 15.06 of Apertis.

3.25 NEW VERSION OF AD INTERFACES

An OEM has released a vehicle with version A of their AD operating system, and version
15.06 of Apertis running in the CD. For the next minor update to their vehicle, the OEM has
made a number of changes to the underlying AD software, and has changed a few of its
external interfaces and exposed a few more vehicle-specific features in new interfaces.
They want to make appropriate modifications to Apertis to align it with these changed
interfaces, but do not wish to make major modifications to Apertis, and wish to (broadly)
stick with version 15.06. They will release the vehicle using this version B of their AD
operating system, and a tweaked version 15.06 of Apertis.

In other words, this scenario applies only when the OEM has updated the AD, and wants to
make a corresponding update to the CD. For the reverse scenario where the CD has been
upgraded, it is required that the AD does not need to be updated: see use cases 3.15 and
3.16.

3.26 UNSUPPORTED AD INTERFACES

An OEM uses an AD operating system which exposes a large number of interfaces to
various esoteric automotive components. Only a few of these components are currently
supported by Apertis version A, which they are running in their CD. Apertis version B
supports some more of these components, and exposes them in its SDK APIs. The OEM
wishes to release a new version of the same vehicle, keeping the same version of the AD
operating system, but using version B of Apertis and exposing the now-supported
components in the SDK APIs.

However, some of the other components which are exposed by the AD operating system in
its inter-domain interface cannot be securely supported by Apertis (for example, they may
allow unrestricted write access to the in-vehicle network). These should not be accessible
by the SDK APIs at any time.

3.27 CONTACTS SHARING

A vehicle maintains an address book in its AD operating system, which stores some of the
user’s contacts on a removable SD card. The user interface, run by the CD, needs to be able
to display and modify these contacts in the Apertis address book application.

3.28 PROTOCOL COMPATIBILITY

An older vehicle, using an old version A of some AD operating system was using a
corresponding version A of Apertis in its CD. The CD operating system is upgraded to a
recent version of Apertis, version B, by the garage when the vehicle is taken in for a service.
This version of Apertis uses a much more recent version of the underlying software for the
inter-domain communication protocol. It needs to continue to work with the old version A
of the AD operating system, which is running a much older version of the protocol
software.

3.28.1 KDBUS PROTOCOL COMPATIBILITY

If, for example, the inter-domain communication protocol is implemented using dbus-
daemon in version A of the AD operating system, and in the corresponding version A of
Apertis; and version B of Apertis uses kdbus instead of dbus-daemon, the two OSs must
still communicate successfully.

3.29 NAVIGATION SYSTEM

A proprietary navigation system is running on the AD, with full access to the vehicle’s
navigation hardware, including inertial sensors and a GPS receiver. A tour application on
the CD wishes to use location-based services, reading the vehicle’s location from the
navigation system on the AD, then requesting to the navigation service to set its
destination to a new location for the next place in the tour. It sends a stream of points of
interest to the navigation system to display on the map while the driver is navigating. This
stream is not high bandwidth; neither are the location updates from the GPS.

3.30 MARSHALLING RESOURCE USAGE

The ‘proxy’ software on either side of the inter-domain connection which handles the low-
level communication link is the first software in a domain to handle malicious input. If
malicious input is sent to a domain with the intent of causing a denial of service in that
software, the rest of the software in the domain should be unaffected, and should treat the
connection as timing out or compromised. The behaviour of the proxy software should be
confined so that it cannot use excess resources in the domain and hence extend the
denial of service attack to the whole domain.

3.31 FEEDBACK FOR MALICIOUS APPLICATIONS

If an application uses SDK APIs incorrectly (for example, by providing parameters which
are outside valid ranges), it may be reported to the Apertis store as a ‘misbehaving
application’ and scheduled for further investigation and possible removal from the Apertis

store. Similarly if the inter-domain communication APIs are used incorrectly (for example,
if the AD returns an error stating that input validation checks have failed for an API call).

This could also result in an application being blacklisted by the CD’s application manager,
disallowing it from running in future until it is updated from the Apertis store.

3.32 COMPROMISED CD WITH DELAYED FIX

An attacker has somehow completely compromised the CD operating system, and has root
access to it. It will take the OEM a few weeks to produce, test and distribute a fix for the
exploit used by the attacker, but vehicle owners would like to continue to use their
vehicles, with reduced functionality (no CE domain) in the meantime, because the attack
has not compromised the AD. The OEM has provided them with an authenticated method
of informing the AD to shut down the CD and keep it shut down until an authenticated
update has been applied and has fixed the exploit and removed the attacker from the CD
(probably by overwriting the entire OS with a fresh copy). This update can only be applied
at a garage, but in order to allow speedy deployment, the user can switch the AD to this
stand-alone mode themselves, using a trusted input path to the AD.

3.33 DENIAL OF SERVICE THROUGH FLOODING

A speedometer application bundle constantly requests vehicle speed information from the
AD. Hundreds of requests are made per second. The AD ensures this does not affect overall
system performance, potentially at the cost of its responsiveness to the speedometer
application’s requests.

(Note: This assumes that the corresponding denial of service rate limiting which is implemented in
the SDK API used by the speedometer application has somehow failed or been bypassed. In reality,
all SDK APIs are also responsible for implementing their own rate limiting as a first level of
protection against denial of service attacks.)

3.34 MALICIOUS CD UI

An attacker has somehow completely compromised the CD operating system, and has root
access to it. They can display whatever they like on the graphics output from the CD, which
is shared with that from the AD on a single screen. The attacker tries to replicate the AD UI
on the CD’s output and trick the user into entering personal data or security credentials in
this faked UI, believing it to be the actual AD UI. There should be a way for the user to
determine whether they are inputting details via a trusted path to the AD.

3.35 PLUG-AND-PLAY CD DEVICE

In a particular vehicle, the CD device can be unplugged from the dashboard by the user,
and passed around the car so that, for example, a rear seat passenger could play a game.
This disconnects it from the AD, but it should continue to function with some features
(such as Wi-Fi or Bluetooth) disabled until it is reconnected. Once reconnected to the
dashboard it should reestablish its connections. See also, use cases 3.20, 3.21 and 3.22.

(Note: This is a much lower priority than other setups, but should still be considered as part of the
overall design, even if the code for it will be implemented as a later phase.)

3.36 CONNECTING AN SDK TO A DEVELOPMENT VEHICLE

A developer is running the SDK as a standalone CD system in a virtual environment on a
laptop. They connect the laptop to the AD physically installed in a development car using
an Ethernet cable, and expect to receive sensor data from the car, using the sensors and
actuators SDK API, which was previously returning mock results from the standalone
system.

3.36.1 CONNECTING AN SDK TO A PRODUCTION VEHICLE

The developer wonders what would happen if they tried connecting their SDK laptop to the
AD in a production vehicle. They try this, and nothing happens — they cannot get sensor
data out of the vehicle, nor use any of its other APIs.

4 SECURITY MODEL
See the Security concept design5 for general terminology including the definitions used for
integrity, availability, confidentiality and trust.

4.1 ATTACKERS

4.1.1 VEHICLE’S OWNER

The vehicle’s owner may be an attacker. They have physical access to the vehicle, including
its in-vehicle network, the physical inter-domain communications link, and the board or
boards which the automotive domain (AD) and consumer-electronics domain (CD) are on.
We assume they do not have the capabilities to perform invasive attacks on silicon on the
boards. Specifically, this means that in a virtualised setup where the AD and CD are run as
separate virtual machines on the same CPU, we assume the attacker cannot read or
modify the inter-domain communications link between them.

However, we do assume that they can perform semi-invasive or non-invasive attacks6 on
silicon on the boards. This means that they could (with difficulty) extract encryption keys
from a secure key store on the board. A secure key store may be provided by the Secure
Boot design7, but may not be present due to hardware limitations — if so, the vehicle’s
owner will be able to extract encryption keys from the device more easily.

The vehicle’s owner may wish to attack their vehicle in order to get access to licenced
content which they would otherwise have to pay for8. We assume they do not want to take
control of the vehicle, or to gain arbitrary code execution privileges — they can drive the
vehicle normally, or develop and choose to install their own application bundle for this.

4.1.2 PASSENGER

The passenger is a special kind of third party attacker (section 4.1.3) who additionally has
access to the in-vehicle network. This may be possible if, for example, the Apertis device in
the vehicle is removable so it can be passed to a passenger, exposing a connector behind
it.

The passenger may be trying to access confidential information belonging to the vehicle
owner (if a multi-user system is in use).

4.1.3 THIRD PARTIES

Any third party may be an attacker. We assume they have physical access to the exterior of
the vehicle, but not to anything under the bonnet, including the in-vehicle network, the
physical inter-domain communications link, and the board or boards which the domains
are on. This means that all garage mechanics must be trusted. They do, however, have
access to all communications into and out of the vehicle, including Bluetooth, 4G, GPS and
Wi-Fi.

5 https://wiki.apertis.org/ConceptDesigns (version 1.1.4 was current at the time of writing)
6 http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
7 As of February 2016, the Secure Boot design is still forthcoming
8 See the Conditional Access design: https://wiki.apertis.org/Conditional_Access

https://wiki.apertis.org/Conditional_Access
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
https://wiki.apertis.org/ConceptDesigns

We assume any third party attacker can develop and deploy applications, and convince
the owner of a vehicle to install them. These applications are subject to the normal
sandboxing applied to any application installed on an Apertis system. These applications
are also subject to the normal Apertis store validation procedures, but we assume that a
certain proportion of malicious applications may get past these procedures temporarily,
before being discovered and removed from the store.

We assume that a third party attacker does not have access to the Apertis store servers.
This means that all staff who have access to them must be trusted.

A third party attacker may be trying to:

• Access confidential information belonging to the vehicle owner.

• Compromise the integrity of the vehicle’s control system (the automotive domain).
For example, to trigger unintended acceleration or to change the radio channel to
spook the driver.

• Compromise the integrity of the CE domain to, for example, make it part of a botnet,
or cause it to call premium rate numbers owned by the attacker to generate money.

• Compromise the availability of the vehicle’s control system (the automotive
domain) to bring the vehicle to a halt.

• Compromise the availability of the vehicle’s infotainment system (the CE domain)
to cause a nuisance to the driver or passengers.

• Compromise the confidentiality of the device key (see the conditional access
design9) in order to extract licenced content (for example, music) from application
bundles.

4.1.4 TRUSTED DEALER

As above, all authorized vehicle dealers, garages or other sale/repair locations have to be
trusted, as they have more unsupervised access to the vehicle’s hardware, and more
capabilities, than the vehicle owner, passenger or a third party.

4.2 SECURITY DOMAINS

• Automotive domain

◦ There may be security sub-domains within the automotive domain, but for the
purposes of this design it is treated as a black box

• Consumer-electronics domain:

◦ Each application sandbox in the consumer-electronics domain

◦ CE domain operating system (this includes all the daemons for the SDK APIs —
these are technically separate security domains, but since they communicate
only with sandboxes and the CE domain proxy, this makes the model more
complex for no analytical advantage)

9 https://wiki.apertis.org/Conditional_Access

https://wiki.apertis.org/Conditional_Access

◦ CE domain proxy for the inter-domain communication

• Other devices on the in-vehicle network, and the outside world

• Hypervisor (if running as virtualised domains)

4.3 SECURITY MODEL

• Both domains must assume that the inter-domain communication link has no
confidentiality or integrity, and is controlled by an attacker (a man in the middle
with the ability to modify traffic)

◦ This means they must not trust any traffic from other devices on the network

• The AD and CD operating systems must assume all input from external sources
(Wi-Fi, Bluetooth, GPS, 4G, etc.) is malicious

• The CD operating system may assume all API calls from the AD (as proxied by the
CD proxy) are not controlled by an attacker, assuming they have come over an
authenticated channel which guarantees integrity between the AD and CD proxy; in
other words, the AD must not deny confidentiality or integrity to the CD

• The AD may deny availability to the CD operating system, by closing the inter-
domain link in response to the user disabling the CD while waiting for a critical
security update

• The AD must assume all API calls from the CD are malicious, in case the CD has
been compromised

• The CD must assume that all input and output from third party applications in
sandboxes is malicious, including all their API calls

• If a hypervisor is present:

◦ The AD and CD operating systems may assume all control calls from the
hypervisor are not controlled by an attacker

◦ The hypervisor must assume all input from the CD is malicious

◦ The hypervisor may assume that all input from the AD is not malicious

▪ Note that, when combined with the fact that the AD cannot be updated
easily, this makes security bugs in the AD extremely critical and extremely
hard to fix

• Tampering with the AD or CD software must be detectable even if it is not
preventable (tamper evidence of the AD and CD)

• If one vehicle is attacked and compromised, the same effort must be required to
compromise other vehicles

5 NON-USE-CASES

5.1 PRODUCTION CE DOMAIN USED IN MULTIPLE CONFIGURATIONS

A production CE domain operating system cannot be used in multiple configurations, for
example as both an operating system running on one CPU of a two-CPU board shared with
the automotive domain OS; and then as an image running on a separate board connected
to an in-vehicle network with other devices connected.

This requirement would mean that the inter-domain communications system would have
to support runtime reconfiguration, which would be a vector for protocol-downgrade
attacks while bringing no major benefits. An attacker could try to trick the CE domain into
believing it was in (for example) a virtualised configuration when it wasn’t, which could
potentially disable its encryption, due to the assumption the domain could make about its
inter-domain communications link having inbuilt confidentiality.

6 REQUIREMENTS

6.1 SEPARATED TRANSPORT LAYER

The transport layer for transmitting inter-domain communications between the domains
must be separated from the APIs being transported, in order to allow for different physical
links between the domains, with different security properties.

6.1.1 TRANSPORT TO SDK APIS

Support a configuration where the CD is running in a virtual machine with the Apertis SDK,
so the peer (which would normally be the AD) is a mock AD daemon running against the
SDK.

See Standalone setup.

6.1.2 TRANSPORT OVER VIRTIO

Support a configuration where the CD and AD communicate over a virtio link between two
virtual machines under a hypervisor.

See Basic virtualised setup.

6.1.3 TRANSPORT OVER A PRIVATE ETHERNET LINK

Support a configuration where the CD and AD are on separate CPUs and communicate over
a point-to-point Ethernet link.

See Separate CPUs setup, Separate boards setup.

6.1.4 TRANSPORT OVER A PRIVATE ETHERNET LINK TO A DEVELOPMENT VEHICLE

Support a configuration where the CD is running in an SDK on a laptop, and the AD is
running in a developer-mode Apertis device in a vehicle, and the two communicate over a
wider shared Ethernet.

See Connecting an SDK to a development vehicle.

6.1.5 TRANSPORT OVER A SHARED ETHERNET LINK

Support a configuration where the CD and AD are on separate CPUs are are both connected
to some wider shared Ethernet.

See Separate boards setup with other devices, Multiple CE domains setup.

6.2 MESSAGE INTEGRITY AND CONFIDENTIALITY IN TRANSPORT LAYER

Some of the possible physical links between domains do not guarantee integrity or
confidentiality of messages, so these must be implemented in the software transport
layer.

See Separate CPUs setup, Separate boards setup, Separate boards setup with other
devices, Multiple CE domains setup, Wi-Fi access.

6.3 RELIABILITY AND ERROR CHECKING IN TRANSPORT LAYER

Some of the possible physical links between domains do not guarantee reliable or error-
free transfer of messages, so these must be implemented in the software transport layer.

See Separate boards setup, Separate boards setup with other devices, Multiple CE
domains setup.

6.4 MUTUAL AUTHENTICATION BETWEEN DOMAINS

An attacker may interpose on the inter-domain communications link and attempt to
impersonate the AD to the CD, or the CD to the AD. The domains must mutually
authenticate before accepting any messages from each other.

See Tinkering vehicle owner on the network.

6.5 SEPARATE AUTHENTICATION FOR DEVELOPER AND PRODUCTION MODE
DEVICES

A CD running in an SDK must be able to connect to and authenticate with an AD running in
a vehicle which is in a special ‘developer mode’. If the same CD is connected to a
production vehicle, it must not be able to connect and authenticate.

See Connecting an SDK to a development vehicle, Connecting an SDK to a production
vehicle.

6.6 INDIVIDUALLY ADDRESSED DOMAINS

In order to support multiple CE domains using the same automotive domain, each domain
(consumer–electronics and automotive) must be individually addressable. The system
must not assume that there are only two domains in the network.

See Multiple CE domains setup.

6.7 TRAFFIC CONTROL FOR LATENCY

In order to support delivery of touchscreen events with low latency (so that UI
responsiveness is not perceptibly slow for the user), the system must guarantee a low
latency for all communications, or provide a traffic control system to allow certain
messages (for example, touchscreen messages) to have a guaranteed latency.

See Touchscreen events.

6.8 TRAFFIC CONTROL FOR BANDWIDTH

In order to prevent some kinds of high bandwidth message from using all the bandwidth
provided by the physical link, the system must provide a traffic control system to ensure
all types of message have fair access to bandwidth (where ‘fairness’ is measured
according to some rigorous definition).

This may be implemented by separating ‘control’ and ‘data’ streams (see sections 2.4 and

2.5), or by applying traffic control algorithms.

See Wi-Fi access, Bluetooth access.

6.9 TRAFFIC CONTROL FOR FREQUENCY

In order to prevent denial of service due to a service sending too many messages at once
(so the communication overheads of those messages start to dominate bandwidth
usage), the system must guarantee fair access to enqueue messages. This is subtly
different from fair access to bandwidth: service A sending 100000 messages of 1KB per
second and service B sending 1 message of 100000KB per second have the same
bandwidth requirements; but if the inter-domain link saturates at 100000KB per second,
some of the messages from service A must be delayed or dropped as the messaging
overheads exceed the bandwidth limit.

See Denial of service through flooding.

6.10 SEPARATION OF CONTROL AND DATA STREAMS

Certain APIs will need to provide data and control streams separately, with different
latency and bandwidth requirements for both. The system must support multiple streams;
this may be via an explicit separation between ‘control’ and ‘data’ streams, or by applying
traffic control algorithms.

See Wi-Fi access, Bluetooth access, Audio transfer, Video decoding.

6.11 NO UNTRUSTED ACCESS TO AD HARDWARE

The entire point of an inter-domain communication system is to isolate the CD from direct
access to sensitive hardware, such as vehicle actuators or hardware with direct memory
access (DMA) rights to the AD CPU’s memory. This must apply equally to decoder hardware
— decoders or other hardware handling untrusted data from users must not be trusted by
the AD if the CD can send untrusted user data to it, unless it is certified as a security
boundary, able to handle malicious user input without being exploited.

Specifically, this means that hardware decoders must only access memory which is
accessible by the AD CPU via an input/output memory management unit (IOMMU), which
provides memory protection between the two, so that the hardware decoder cannot access
arbitrary parts of memory and proxy that access to a malicious or compromised
application in the CD.

Note that it is not possible to check audio or video content for ‘badness’ before sending it
to a decoder, as that entails doing the full decoding process anyway.

See Audio transfer, Video decoding, Video or audio decoder bugs, Connecting an SDK to a
production vehicle.

6.12 TRUSTED PATH FOR USERS TO UPDATE THE CD OPERATING SYSTEM

There must exist a trusted path from the user to the system updater in the CD, or to a

component in the AD which will update the CD. The user must always have access to this
update system (it must always be available).

This trusted path may also be used by garages to upgrade the CD when servicing a vehicle;
or a different path may be used.

See Video or audio decoder bugs, After-market CD upgrades, Malicious CD UI.

6.13 SAFETY LIMITS ON AD APIS

The automotive domain must apply suitable safety limits to all of its APIs, which are
enforced within the AD, so that even if a properly authenticated and trusted CD makes an
API call, it is ignored if the call would make the AD do something unsafe.

In this case, ‘safety’ is defined differently for each actuator or combination of actuator
settings, and will vary between AD implementations. It might not be possible to detect all
unsafe situations (in the sense of an unsafe situation which could lead to an accident).

See Tinkering vehicle owner on the boards, Malicious CD.

6.14 RATE LIMITING ON CONTROL MESSAGES

The inter-domain service in the CD and AD should impose rate limiting on control
messages coming from the CD, to avoid a compromised service in the CD from using a
denial of service attack to prevent other messages being transmitted successfully.

This should be in addition to rate limiting implemented in the SDK APIs in the CD
themselves, which are expected to be the first line of defence against denial of service
attacks.

See Denial of service through flooding.

6.15 IGNORE UNRECOGNISED MESSAGES

Both the CD and AD must ignore (and log warnings about) inter-domain communication
messages which they do not recognise. If the message expects a reply, an error reply must
be sent. The domains must not, for example, shut down or crash when receiving an
unrecognised message, as that would lead to a denial of service vulnerability.

See Tinkering vehicle owner on the boards, Malicious CD.

6.16 PORTABLE TRANSPORT LAYER

The transport layer must be portable to a variety of operating systems and architectures,
in order that it may be used on different AD operating systems. This means, for example,
that it must not depend on features added to very recent versions of the Linux kernel, or
must have fallback implementations for them.

See Support multiple AD operating systems.

6.17 SUPPORT PUSH MODE AND PULL MODE COMMUNICATIONS

The CD must be able to use pull mode communications with the AD, where it makes a
method call and receives a reply; and push mode communications, where the AD emits a
signal for an event, and the CD receives this.

See Support multiple AD operating systems.

6.18 OEM AD INTEGRATION API

In order to allow any OEM to connect their AD to the system, there must be a well defined
API which they connect their OEM-specific APIs for vehicle functionality to, in order for that
functionality to be exposed over the inter-domain communication link.

This API must support an implementation which uses the services in the Apertis SDK.

See Support multiple AD operating systems, Standalone setup.

6.19 FLEXIBILITY IN OEM AD INTEGRATION API

As the functionality exported by different ADs differs, the integration API for connecting it
to the inter-domain communication system must be a general one — it must not require
certain functionality or data types, and must support functionality which was not initially
expected, or which is not currently supported by any CD. This functionality should be
exposed on the inter-domain communications link, in case future versions of the CD can
take advantage of it.

See Support multiple AD operating systems, Before-market CD upgrades, After-market CD
upgrades, New version of AD software, New version of AD interfaces.

6.20 INFLEXIBILITY IN OEM AD INTEGRATION API

The OEM AD integration API must not allow access to arbitrary services or APIs on the AD. It
must only allow access to the services and APIs explicitly exposed by the OEM in their use
of the integration API.

See Unsupported AD interfaces.

6.21 STABILITY IN INTER-DOMAIN COMMUNICATIONS PROTOCOL

As the versions of the AD and CD change at different rates, the inter-domain
communications protocol must be well defined and stable — it must not change
incompatibly between one version of the CD and the next, for example.

If the protocol uses versioning to add new features, both domains must support protocol
version negotiation to find a version which is supported if the latest one is not.

See Before-market CD upgrades, After-market CD upgrades, New version of AD software,
Unsupported AD interfaces, Protocol compatibility.

6.22 TESTABILITY OF PROTOCOLS

All IPC links in the inter-domain communications system must be testable individually,
without requiring the other parts of the system to be running. For example, the link
between applications and SDK API services must be testable without running an
automotive domain; the link between SDK API services and the inter-domain interface at
the boundary of the CE domain must be testable without running an automotive domain;
etc.

See Testability, New version of AD software, New version of AD interfaces.

6.23 TESTABILITY OF PROTOCOL PARSERS AND WRITERS

All protocol parsers and writers in the inter-domain communications system must be
testable individually, using unit tests and test vectors which cover all facets of the
protocol. These tests must include negative tests — checks that invalid input is correctly
rejected. For example, if a protocol requires a certificate to authenticate a peer, a test must
be included which attempts a connection with different types of invalid certificate.

See Testability, New version of AD software, New version of AD interfaces.

6.24 TESTABILITY OF PROCESSES

The code implementing all processes in the inter-domain communications system must
be testable individually, without having to run each process as a subprocess in a test
harness (because this makes testing slower and error prone). This means implementing
each process as a library, with a well defined and documented API, and then using that
library in a trivial wrapper program which hooks it up to input and output streams and
accepts command line arguments.

See Testability, New version of AD software, New version of AD interfaces.

6.25 CD SYSTEM SERVICES SEPARATED FROM TRANSPORT LAYER

There must be a trust boundary between each service on the CD which has access to the
inter-domain communication link, and the service which provides access to the inter-
domain communications link itself. The inter-domain service should validate that
messages from a service are related to that service (for example, by having a whitelist of
types of message which each service can send).

This limits the potential for escalation if service A is exploited — then the attacker can only
use the inter-domain service to impersonate A, rather than to impersonate all services in
the CD. It also allows the resource usage of the inter-domain service to be limited, to limit
the impact of a denial of service attack on it.

See Malicious CD, Marshalling resource usage.

6.26 NO DEPENDENCY ON CD SPECIFIC HARDWARE

As the CD hardware may be upgraded by a garage at some point, the inter-domain

communications should not depend on specific identifiers in this hardware, such as an
embedded cryptographic key. Such keys may be used, but the AD should accept multiple
keys (for example, all keys signed by some overall key provided by Apertis to all OEMs),
rather than only accepting the specific key from the hardware it was originally run against.

This requirement may also be satisfied by including provisions for updating the copy of a
key in the AD if such a dependency on a specific CD key is a sensible implementation
choice.

See After-market upgrade of a domain.

6.27 IMMEDIATE ERROR RESPONSE IF SERVICE ON PEER IS UNAVAILABLE

If a service on the peer has crashed or is unresponsive, but the peer itself (including its
inter-domain communications link) is still responsive, that peer should return an error to
the other domain, which should propagate it to any caller of SDK APIs which use the failing
service. An error response must be returned, otherwise the caller will time out.

See Power cycle independence of domains (CD down), Power cycle independence of
domains (AD down, single screen), Power cycle independence of domains (AD down,
multiple screens), Plug-and-play CD device.

6.28 IMMEDIATE ERROR RESPONSE IF PEER IS UNAVAILABLE

If the peer has crashed, or is not currently connected to the physical inter-domain
communications link (either because it has been unplugged or due to a fault), the other
peer must generate a local error response in the inter-domain service and return that to
any caller of SDK APIs which require inter-domain communications. An error response
must be returned, otherwise the caller will time out.

See Power cycle independence of domains (CD down), Power cycle independence of
domains (AD down, single screen), Power cycle independence of domains (AD down,
multiple screens), Plug-and-play CD device.

6.29 TIMEOUT ERROR RESPONSE IF PEER DOES NOT RESPOND

If the peer is unresponsive to a particular inter-domain message, the other peer must
generate a local error response in the inter-domain service and return that to the caller of
the SDK API which required inter-domain communications. An error response must be
returned, otherwise the caller will wait for a response indefinitely (or have to implement its
own timeout logic, which would be redundant).

See Power cycle independence of domains (CD down), Power cycle independence of
domains (AD down, single screen), Power cycle independence of domains (AD down,
multiple screens), Temporary communications problem.

6.30 ALL INTER-DOMAIN COMMUNICATIONS APIS ARE ASYNCHRONOUS

As inter-domain communications may have some latency, or may time out after a number

of seconds, all SDK APIs which require inter-domain communications must be
asynchronous, in the GLib sense10: the call must be started, a handler for its response
added to the caller’s main loop, and the caller must continue with other tasks until the
response arrives from the other domain.

This encourages UIs to be written to not block on SDK API calls which might take multiple
seconds to complete, as during that time, the UI would not be redrawn at all, and hence
would appear to ‘freeze’.

See Temporary communications problem.

6.31 RECONNECT TO PEER AS SOON AS IT IS AVAILABLE

If a domain has crashed and restarted, or was disconnected from the inter-domain
communications link and then reconnected, the domain must reconnect to its peer as
soon as the peer can be found on the network. If, for example, both domains had crashed,
this may involve waiting for the peer to connect to the network itself.

See Plug-and-play CD device.

6.32 EXTERNAL DOMAIN WATCHDOG

Both domains must be connected to an external watchdog device which will restart them
if they crash and fail to restart themselves.

The watchdog must be external, rather than being the other domain, in case both domains
crash at the same time.

See Power cycle independence of domains (CD down), Power cycle independence of
domains (AD down, single screen), Power cycle independence of domains (AD down,
multiple screens).

6.33 REPORTING SYSTEM FOR MALICIOUS APPLICATIONS

There should exist a trusted path from the application launcher in the CD to the Apertis
store to allow the launcher to provide feedback about applications which are detected to
have done ‘malicious’ things, such as called an SDK API with parameters which are
obviously out of range.

If such a path exists, the inter-domain service in the CD must be able to detect error
responses from the AD which indicate that malicious behaviour has been detected and
rejected, and must be able to forward those notifications to the reporting system.

See Feedback for malicious applications.

10 https://developer.gnome.org/gio/stable/GAsyncResult.html

https://developer.gnome.org/gio/stable/GAsyncResult.html

6.34 ABILITY TO DISABLE THE CONSUMER–ELECTRONICS DOMAIN

There must exist a trusted path to a setting in the AD to allow the vehicle owner to disable
the CD because it has been compromised, pending taking the vehicle to a trusted dealer to
install an update.

As well as preventing booting the CD, this must disable all inter-domain communications
from within the inter-domain service in the AD.

See Compromised CD with delayed fix.

6.35 TAMPER EVIDENCE

If the CD or AD, or communications between them are tampered with by an attacker, it
must be possible for an investigator (who is trusted by and has access to tools provided
by the OEM) to determine that the software or hardware was modified — although it might
not be possible for them to determine how it was modified. This will allow for liability to be
attributed in the event of an accident or warranty claim.

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the boards.

6.36 NO GLOBAL KEYS IN VEHICLES

The security which protects the inter-domain communication system (including any
trusted boot security) must use unique keys for each vehicle, and must not have a global
key (one which is the same in all vehicles) as a single point of failure.

This means that if an attacker manages to compromise one vehicle, they must not be able
to learn anything (any keys) which would allow them to compromise another vehicle with
less effort.

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the boards.

7 EXISTING INTER-DOMAIN COMMUNICATION SYSTEMS
As this is quite a unique problem, we know of no directly comparable systems. More
generally, this is an instance of a distributed system, and hence similar in some respects
to a number of existing remote procedure call systems or distributed middleware systems.

If comparisons with specific systems would be beneficial, they can be included in a future
revision of this document.

Open question: Are there any relevant existing systems to compare against?

8 APPROACH
Based on the above research (section 7) and requirements (section 6), we recommend the
following approach as an initial sketch of an inter-domain communication system.

8.1 OVERALL ARCHITECTURE

In Figure 1, each box represents a process, and hence each connection between them is a
trust boundary.

Figure 1: Apertis IDC architecture

APIs from the automotive domain are exported by an export layer (section 8.6) as D-Bus
objects on the inter-domain communications link. This link runs a known version of the D-
Bus protocol (and requires backwards compatibility indefinitely) between an inter-domain
service process in each domain (section 8.5). The inter-domain service in the CE domain
sends and receives D-Bus messages for the objects exported by the automotive domain,
and proxies them to a private bus in the CE domain. SDK services in the CE domain
connect to this bus, and an adapter layer (section 8.7) in each service converts the APIs
from the automotive domain to the SDK APIs used in the version of Apertis in use in the CE
domain. These SDK APIs are exported onto the normal D-Bus session bus, to be used by
applications (section 8.9).

The export layer and adapter layer provide abstraction of the APIs from the automotive
domain: the export layer converts them from C APIs, QNX message passing, or however
they are implemented in the automotive OS, to a D-Bus API which is specific to that OEM,
but which has stability guarantees through use of API versioning (section 8.8). The adapter
layer converts from this D-Bus API to the current version of the Apertis SDK APIs. Both
layers are OEM-specific.

The use of the D-Bus protocol throughout the system means that between the export layer
and the adapter layer, message contents to not need to be remarshalled — messages only
need their headers to be changed before they are forwarded. This should eliminate a
common cause of poor performance (remarshalling).

High-bandwidth data connections (section 8.3.6) are provided in parallel with the control
connection which runs this D-Bus protocol (section 8.3.5). They use TCP or UDP, and are
opened between the two inter-domain services on request. Applications and services must
define their own protocols for communicating over these links, which are appropriate to
the data being transferred (for example, audio data or a Bluetooth file transfer).

Authentication, confidentiality and integrity of all inter-domain communications (the
control connection and data connections) are provided by using IPsec as the bottom layer
of the protocol stack (section 8.3.4). The same protocol stack is used for all configurations
of the two domains (from a standalone CE domain through to multiple CE domains on a
shared network with an automotive domain), to ensure that the same code path is used
for all configurations and hence is widely tested (section 8.3.2).

Addressing and discovery of domains, before the initial connection between them, is
provided by IPv6 neighbour discovery (section 8.3.3).

Traffic control is implemented in the CE domain using standard Linux kernel traffic control
mechanisms, with the policy specified by the inter-domain service (section 8.4). It is
applied for the control connection and for each data connection separately, as they are all
separate TCP or UDP connections.

8.2 SECURITY DOMAINS

As process boundaries are the only way of enforcing trust boundaries, each of these
security domains corresponds to at least one separate process in the system.

• Inter-domain service in the automotive domain. We recommend that this remains a
separate security domain from the rest of the services and software running in the
AD. This allows it to be isolated from other components to reduce the attack surface
exposed by the AD.

Figure 2: Responsibilities for areas of code in the IDC architecture

• Rest of the automotive domain: as mentioned in section 4.2, the automotive domain
is essentially a black box.

• Each application sandbox in the consumer–electronics domain.

• Inter-domain service in the consumer–electronics domain.

• Each service for an SDK API in the consumer–electronics domain. The trust
boundaries between them may not be enforced strongly (as all services in the
consumer–electronics domain are considered as trusted parts of the operating
system), but their trust boundaries with the inter-domain service should be
enforced, and the inter-domain service should consider them as potentially
compromised.

• Other devices on the in-vehicle network, and the outside world.

• Hypervisor (if running as virtualised domains).

8.3 PROTOCOL DESIGN

The protocol for communicating data between the domains has two planes: the control
plane, and the data plane. They have different requirements, but both require addressing,
routing, mutual authentication of peers, confidentiality of data and integrity of data. In
addition, the control plane must have bi-directional, in-order transmission, framing,
reliability and error detection. Conversely, the data plane must have multiplexing, and the
ability to apply traffic control to each of its connections (section 8.4).

The control plane is used for sending control data between the domains — these are the
method calls which form the majority of inter-domain communications. They require low
latency, and are low bandwidth. The control protocol itself (section 8.3.5) provides push
and pull method call semantics, and allows for new data connections (section 8.3.6) to be
opened. Only one control connection exists between a pair of domains, and it is always
connected.

The data plane is used for high bandwidth data, such as video or audio streams, or Wi-Fi,
4G or Bluetooth downloads. The latency requirements are variable, but all connections are
high bandwidth. The inter-domain communication system provides a plain stream for
each data plane connection, and services must implement their own protocol on top which
is appropriate for the specific type of data being transmitted (for example, audio or video
streaming; or Wi-Fi downloads). Data connections are created between two domains on
demand, and are closed after use.

8.3.1 IPSEC VERSUS TLS

An important design decision is whether to use IPsec11 or TLS12 (and DTLS) for providing the
security properties of the inter-domain connection.

If IPsec is used (Figure 3), it forms the bottom layer of the protocol hierarchy, and
implements addressing, routing, mutual authentication, confidentiality and integrity for

11 https://en.wikipedia.org/wiki/IPsec
12 https://en.wikipedia.org/wiki/Transport_Layer_Security

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/IPsec

all connections in the control and data planes.

If TLS is used (Figure 4), it forms the layer just below the application protocols in the
protocol hierarchy — the control plane would use a single TLS over TCP connection; and the
data plane would use multiple TLS over TCP or DTLS over UDP connections. TLS (and hence
DTLS — they have the same security properties) implements mutual authentication,
confidentiality and integrity, but only for a single connection; each new connection needs
a new TLS session.

The chief advantage of IPsec is its transparency: any protocol can be tunnelled using it,
without needing to know about the security properties it has. However, to do this, IPsec
needs to be supported by both the AD and CD kernels. Some automotive operating systems
may not support IPsec (although, as a data point, QNX seems to).

A 2003 review of the IPsec protocol13 identified a number of problems with it. However,
since then, it has been updated by RFCs 430114, 604015 and 761916. These should be
evaluated and the overall protocol security determined. In contrast, the security of TLS has
been well studied, especially in recent years after the emergence of various vulnerabilities

13 https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
14 https://tools.ietf.org/html/rfc4301
15 https://tools.ietf.org/html/rfc6040
16 https://tools.ietf.org/html/rfc7619

Figure 4: Protocol stacks for control and data planes if using TLS.

Figure 3: Protocol stacks for control and data planes if using IPsec.

https://tools.ietf.org/html/rfc7619
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc4301
https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html

in it. TLS has the advantage that it is a smaller set of protocols than IPsec, and hence
easier to study.

Open question: What is the security of the IPsec protocol in its current (2015) state?

Performance-wise, TLS requires a handshake for each new connection, which imposes
connection latency of at least one round trip (assuming use of TLS session resumption17)
for each new connection (on top of other latency such as the TCP handshake). It is not
possible to use a single TLS session and multiplex connections within it, as this puts the
protocol reliability (TCP retransmission) below the multiplexing in the protocol stack,
which makes the multiplexed connection prone to head of line blocking18, which seriously
impacts performance, and allows one connection to perform a denial of service attack on
all others it is multiplexed with. IPsec has the advantage of not requiring this handshake
for each connection, which significantly reduces the latency of creating new connections,
but does not affect their overall bandwidth once they have reached a steady state.

Open question: What is the performance of TCP and UDP over IPsec, TLS over TCP and DTLS
over UDP on the Apertis reference hardware?

Overall, we recommend using IPsec if it is expected to be supported by all automotive
domain operating systems which will be used with Apertis systems. Otherwise, if an AD OS
might not support IPsec, we recommend using TLS over TCP and DTLS over UDP for all
configurations. We do not recommend providing a choice for OEMs between IPsec and TLS,
as this doubles the possible configurations (and hence testing) of a part of the system
which is both complex and security critical.

The remainder of this document assumes that IPsec is chosen. Throughout, please read
‘IPsec’ as meaning ‘the IPsec protocol stack or the TLS protocol stack’.

8.3.2 CONFIGURATION DESIGNS

The physical links available between the domains differ between configurations of the
domains, as do their properties. For some configurations (Standalone setup, Basic
virtualised setup) confidentiality and integrity of the inter-domain communications
protocol are not strictly necessary, as the physical link itself cannot be observed by an
attacker. However, for the other configurations, these two properties are important.

Since the first two configurations are the ones which are typically used for development,
we suggest implementing confidentiality and integrity for them anyway, regardless of the
fact it’s not strictly necessary. This avoids the situation where the code running on
production configurations is vastly different from that running on development
configurations. Such a situation often leads to inadequate testing of the production code.

This should be weighed against the potential performance gains from eliminating
encryption from those connections, and the potential gains in debuggability (for the
Standalone setup) by being able to inspect network traffic without needing to extract the
encryption key.

Open question: What trade-off do we want between performance and testability for the

17 https://tools.ietf.org/html/rfc5077
18 https://en.wikipedia.org/wiki/Head-of-line_blocking

https://en.wikipedia.org/wiki/Head-of-line_blocking
https://tools.ietf.org/html/rfc5077

different transport layer configurations?

Standalone setup

IPsec running on a loopback interface19 to a service running in the SDK which mocks up
the inter-domain service running in the AD. The security properties it provides are
technically not needed, as the standalone setup is for development and is ignored by the
security model.

Even though there are only two peers communicating, they will both have and use a full
addressing scheme (section 8.3.3).

Basic virtualised setup

A virtio-net connection20 must be set up in the CD and AD virtual guests, using a private
network containing those two peers. If the AD cannot be modified to enable a virtio-net
connection, a normal virtualised Ethernet connection must be used.

In either case, the transport layer will use IPsec between the two. The security properties it
provides are technically not needed for a virtualised configuration, as the security model
guarantees that the hypervisor maintains confidentiality and integrity of the connection.

Even though there are only two peers on the network, they will both have and use a full
addressing scheme (section 8.3.3).

Separate CPUs setup

A normal Ethernet connection must be used to connect the AD and CD on a private
network. IPsec will be used over this Ethernet link, providing all the necessary transport
layer properties.

Even though there are only two peers on the network, they will both have and use a full
addressing scheme, described below.

Separate boards setup

Same as for the separate CPUs setup.

Separate boards setup with other devices

Same as for the separate CPUs setup.

Multiple CE domains setup

Same as for the separate CPUs setup. Each domain’s address must be unique, and the use
of addressing in this configuration becomes important.

19 https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface
20 Virtio-net is the name of the KVM paravirtualised network driver (http://www.linux-kvm.org/page/Virtio).

Similar paravirtualised drivers exist for most hypervisors; so an appropriate one for the hypervisor
should be used. For simplicity, this document will use ‘virtio-net’ to refer to them all.

http://www.linux-kvm.org/page/Virtio
https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface

8.3.3 ADDRESSING AND PEER DISCOVERY

Each domain will be identified by its IPv6 address, and domains will be discovered using
the IPv6 protocol’s secure neighbour discovery protocol21. As domains do not need to be
human-addressable (indeed, the users of the vehicle need never know that it has multiple
domains running in it), there is no need to use DNS or mDNS for addressing.

The neighbour discovery protocol includes a feature called neighbour unreachability
detection, which should be used as one method of determining that one of the domains
has crashed. When a domain crashes, the other domain should poll for its existence on the
network at a constant frequency (for example, at 2Hz) until it reappears at the same
address as before. This frequency of polling is a trade-off between not flooding the network
with connectivity checks, but also detecting reappearance of the domain rapidly.

When reconnecting to a restarted domain, the normal authentication process should be
followed, as if both domains were starting up normally. There is no state to restore for the
inter-domain link itself but, for example, SDK services may wish to re-query the
automotive domain for the current vehicle state after reconnecting. They should do this
after receiving an error response from the AD for an inter-domain communication which
indicated that the other domain had crashed. Such behaviour is up to the implementers of
each SDK service, and is not specified in this design.

8.3.4 ENCRYPTION

The confidentiality, integrity and authentication of the inter-domain communications link
is provided by IPsec in transport mode.

Open question: What more detailed configuration options can we specify for setting up
IPsec? For example, disabling various optional features which are not needed, to reduce
the attack surface. What IKE service should be used?

The system should use an IPsec security policy which drops traffic between the CD and AD
unless IPsec is in use. The security policy should not specify behaviour for
communications with other peers.

Each domain must have an X.509 certificate (essentially, a public and private key pair),
which are used for automatic keying for the IPsec connections. The certificates installed in
the automotive domain must be signed by a certificate authority (CA) specific to the
automotive domain and possibly the OEM. The certificates installed in the CE domain
must be signed by a CA specific to the CE domain and possibly the OEM.

A domain (automotive or CE) which is in developer mode must use a certificate which is
signed by a developer mode CA, not the production mode CA. This allows a production
mode domain to prevent connections from a developer mode domain.

See appendix 13 for a comparison of software and hardware encryption.

In order to maintain confidentiality of the connection, the keys for the IPsec connection
must be kept confidential, which means they must be stored in memory which is not
accessible to an attacker who has physical access to the system (see section 4); or they

21 https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

must be encrypted under a key which is stored confidentially (a key-encrypting key, KEK).
Such a confidential key store should be provided by the Secure Boot design22 — if available,
confidentiality of the inter-domain communications can be guaranteed. If not available,
inter-domain communications will not be confidential if an attacker can extract the boot
keys for the system and use them to extract the inter-domain communications keys.

See section 8.15 for further discussion of the hardware base for confidentiality and
integrity of the system.

Open question: A lot of business logic for control over OEM licencing can be implemented
by the choice of the CA hierarchy used by the inter-domain communication system. What
business logic should be possible to implement?

Open question: Consider key control, revocation, protocol obsolescence, and various
extensions for pinning keys and protocols.

Open question: What can be done in the automotive domain to reduce the possibility of
exploits like Heartbleed23 affecting the inter-domain communications link? This is a trade-
off between the stability of AD updates (high; rarely released) and the pace of IPsec and
TLS security research and updates and the need for crypto-agility (fast). Heartbleed was a
bug in a bad implementation of an optional and not-very-useful TLS extension.

8.3.5 CONTROL PROTOCOL

The control protocol provides push and pull method call semantics and a type system for
marshalling method call parameters and return values — but it does not prescribe a
specific set of APIs which it will transport. It must be flexible in the set of APIs which it
transports.

We suggest using D-Bus over TCP as the control protocol, using a private bus between the
automotive domain and the consumer–electronics domain. For multiple CE domain
configurations, each automotive—consumer–electronics domain pair would have its own
private bus.

The transport should be implemented using D-Bus’ TCP socket transport mechanism24.
Authentication, confidentiality and integrity are provided by the underlying IPsec
connection. D-Bus implements its own datagram framing on top of the TCP stream.

On this bus, APIs from the automotive domain would be exposed as services; the CE
domain can then call methods on those services, or receive signals from them.

D-Bus was chosen as it implements the necessary functionality, reuses a lot of the
technologies already in use in Apertis, is stable, and is familiar to Apertis developers. Note
that we suggest D-Bus the protocol, not necessarily dbus-daemon the message bus daemon
or libdbus the reference protocol library. D-Bus the protocol provides:

• Method calls (pull semantics) with exactly one reply, supporting timeouts

• Error responses

22 As of February 2016, the Secure Boot design is still forthcoming
23 https://en.wikipedia.org/wiki/Heartbleed
24 http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets

http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets
https://en.wikipedia.org/wiki/Heartbleed

• Signals (push semantics)

• Properties

• Strong type system

• Introspection

There are several important points here: introspection means that the D-Bus services on
the AD can send their API definitions to the CD at runtime if needed, so that the CD does
not have to have access to header files (or similar) from the AD. It also means the API
definition can change without needing to recompile things — for example, an update to the
AD could expose new APIs to the CD without needing to update header files on the CD.
Finally, method calls support ‘in’ and ‘out’ parameters (multiple return values) which
allows for bi-directional communication in the control protocol.

Open question: How should the multiple CE configuration (section 8.3.2) interact with D-
Bus signals? Can the adapter layer perform the broadcast to all subscribers?

The D-Bus protocol is stable, and has maintained backwards compatibility with all
previous versions since 200625. If changes to the D-Bus protocol are introduced in future,
they will be introduced as extensions which are used optionally, if supported by both peers
on the bus. Hence backwards compatibility is maintained.

8.3.6 DATA CONNECTIONS

If a service wishes to send high-bandwidth data between the domains, it must open a new
data connection. Data connections are created on demand, and are subject to traffic
control, so the AD may, for example, reject a connection request or throttle its bandwidth
in order to maintain quality of service for existing connections.

The inter-domain communication protocol provides two types of data connection: TCP-like
and UDP-like. These are implemented as TCP or UDP connections between the two
domains, running over IPsec. IPsec provides the necessary authentication, confidentiality
and integrity of the data; TCP or UDP provide the multiplexing between connections (see
Figure 3). Services must implement their own application-specific protocols on top of the
TCP or UDP connection they are provided. For example, a video service may use a lossy
synchronised audio/video protocol over UDP for sending video data together with
synchronised audio; while a download service may use HTTP over TCP for sending
downloads between domains. (See appendix 14 for a discussion of options for
implementing video and audio decoding.) Such protocols are not defined as part of this
design — they are the responsibility of the services themselves to design and implement.

Data connections are opened by sending a request to one of the inter-domain services
(section 8.5), specifying desired characteristics for the connection, such as whether it
should be TCP-like or UDP-like, its bandwidth and latency requirements, etc. The
connection will be opened and a unique identifier and file descriptor for it returned to the
requesting service. This service must then send the identifier over the control connection
so that the corresponding service in the other domain can request a file descriptor for the
other end of the connection from its inter-domain service.

25 http://dbus.freedesktop.org/doc/dbus-specification.html#stability

http://dbus.freedesktop.org/doc/dbus-specification.html#stability

Open question: Could this be simplified by using D-Bus’ support for file descriptor
passing? D-Bus’ TCP transport currently explicitly does not support file descriptor passing,
so implementing it that way without introducing incompatibilities requires planning.

It is tempting to extend D-Bus’ support for file descriptor (FD) passing so that it operates
over TCP to provide these data connections. However, that would effectively be a fork of the
D-Bus protocol, which we do not want to maintain as part of this system. Secondly, due to
the way FD passing works, with the peer passing an FD to the dbus-daemon and asking for
it to be forwarded — this would mean that the peer (i.e. an SDK or OEM service) has the
responsibility for opening the data connection within the IPsec tunnel, which would be
very complex.

Instead, we recommend a custom API provided by the inter-domain service which an SDK
or OEM service can call to open a new data connection, passing in the parameters for the
connection (such as TCP/UDP, quality of service requirements, etc.). The inter-domain
service would communicate over a private control API with the other inter-domain service
to open and authenticate the connection at both ends, and return a file descriptor and
cryptographic nonce (securely random value at least 256 bits long) to the original SDK or
OEM service. This service can use that file descriptor as the data connection, and should
pass the nonce over its own control protocol to the corresponding OEM or SDK service. This
service should then pass the nonce to its inter-domain service and will receive the file
descriptor for the other end of the data connection in reply.

Both inter-domain services should retain their file descriptors (which they have shared
with the OEM and SDK services) for the data connection, so that if the kill switch (section
8.16) is enabled, they can call shutdown() on the data connection to forcibly close it.

The inter-domain services must reserve all well-known names starting with
org.apertis.InterDomain (for example, org.apertis.InterDomain1 or
org.apertis.InterDomain1.DataConnections), and similarly all D-Bus interface names. This
means they must not allow these names to be used as part of the OEM API shared between
the export and adapter layers (section 8.8).

A data connection cannot exist without an associated control connection (though one
control connection may be associated with many data connections). As data connections
are opened and controlled through APIs defined on the inter-domain services, there is no
need for standard network-style service discovery using protocols like DNS-SD26 or SSDP27.

8.4 TRAFFIC CONTROL

Traffic control28 should be set by the inter-domain service (section 8.5) in the CE domain,
using the standard Linux traffic control functionality in the kernel29. As the control
connection and each data connection are separate TCP or UDP connections, they can have
traffic controls applied to them individually, which allows different quality of service
settings for individual data connections; and allows the control connection to have a

26 https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
27 https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
28 https://en.wikipedia.org/wiki/Network_traffic_control
29 http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://en.wikipedia.org/wiki/Network_traffic_control
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD

higher quality of service than all data connections, to help ensure it has guaranteed low
latency.

Applying traffic control in the CE domain has the advantage of knowing what kernel
functionality is available — if it were applied in the automotive domain, its functionality
would be limited by whatever is provided by the automotive OS (for example, QNX). It has
the disadvantage, however, of being vulnerable to the CE domain being compromised: if an
attacker gains control of the inter-domain service in the CE domain, they can disable
traffic control. However, if they have gained control of that service, the only remaining
mitigation is for the automotive domain to shut down the CE domain, so having control
over traffic policy has little effect.

The specific traffic control policies used by the inter-domain service can be determined
later, based on the relative priorities an OEM assigns to different types of traffic.

8.5 PROTOCOL LIBRARY AND INTER-DOMAIN SERVICES

The inter-domain communications protocol should be implemented as a library,
containing all layers of the protocol. The particular domain configuration which the library
targets should be a configure-time option, though the library must support enabling the
Standalone setup transport in conjunction with another transport, when in developer
mode (see section 8.12).

By implementing the protocol as a library, it can be tested easily by being linked into unit
tests — rather than trying to wrap the entire inter-domain service daemon in a test
harness. Internally, the library should implement all protocol layers separately and expose
them to the unit tests so that they can be tested individually.

Furthermore, this allows the protocol code to be reused between the inter-domain service
in the automotive domain, and the inter-domain service in the CE domain.

The main advantage of implementing the protocol as a library is the flexibility this
provides for integrating it into different automotive domain implementations — it can be
integrated into an existing system service (bearing in mind the suggestion to keep it in a
separate trust domain, section 8.2), or could be used as a stand-alone service daemon.

A reference implementation of such a stand-alone inter-domain service program should
be provided with the protocol library. This should provide the necessary systemd service
file and AppArmor profile to allow itself to be strictly confined if the automotive domain OS
supports this.

As the inter-domain communications protocol uses D-Bus, the protocol library must
contain an implementation of the D-Bus protocol. Note that this is not a D-Bus daemon; it
is a D-Bus library, like libdbus or GDBus. See appendix 11 for details about the different
components in D-Bus and their licensing.

Apart from its D-Bus library dependency, the protocol library should be designed with
minimal dependencies in order to be easily integratable into a variety of automotive
domain operating systems (from Linux through to other Unixes, QNX or Autosar). If the
chosen D-Bus library is available as part of the automotive OS (which is more likely for
libdbus than for other D-Bus libraries), it could be linked against; otherwise, it could be

statically linked into the protocol library.

libdbus itself is already quite portable, having been known to work on Linux, Windows, OS
X, NetBSD and QNX. It should not be difficult to port to other POSIX-compliant operating
systems.

Rate limiting of control messages (requirement 6.14) should be implemented in the
protocol library, so that the same functionality is present in both the automotive and CE
domains.

The protocol library should expose the encryption keys for the IPsec connection used in the
inter-domain communications link, including signals for when those keys change (due to
cookie renegotiation on the link). The keys must only be exposed in development builds of
the protocol library. See section 8.13 for more details.

8.6 AUTOMOTIVE DOMAIN EXPORT LAYER

To integrate the inter-domain communications system into an automotive domain
operating system, the APIs to be shared must be exported as objects on the D-Bus
connection provided by the inter-domain service. This is done as an export layer in the
inter-domain service in the automotive domain, customised for the OEM and their specific
APIs. The export layer could be implemented as pure C calls from within the same process
(no protocol at all), or D-Bus, or kdbus, or QNX message passing, or something else
entirely. If D-Bus bus is used, a D-Bus daemon would need to be running on the automotive
domain; otherwise, no D-Bus daemon would be needed.

For example, if the automotive domain provides the APIs which are to be exposed over the
inter-domain connection as:

• C APIs in headers — the inter-domain service would call those APIs directly, and the
export layer would essentially be those C calls;

• daemons with UNIX socket connections — the inter-domain service would connect
to those sockets and run whatever protocol is specified by the daemons, and the
export layer would essentially be the socket connections and protocol
implementations;

• D-Bus services — the inter-domain service would connect to a D-Bus daemon on the
automotive domain and translate the services’ D-Bus APIs into an API to expose on
the inter-domain communications link (see below), and the export layer would be
the D-Bus daemon, D-Bus library in the inter-domain service, and the code to
translate between the two D-Bus APIs.

The APIs must be exported under well-known names30 formatted as reverse-DNS names
owned by the OEM. For example, if the AD operating system was written by Collabora, APIs
would be exported using well-known names starting with com.collabora, such as
com.collabora.CarOS.EngineManagement1 or
com.collabora.CarOS.ClimateControl1.

The API formed by these exported D-Bus objects is vendor-specific, but should maintain its

30 http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus

own stability guarantees — for every backwards-incompatible change to this API, there
must be a corresponding update to the CE domain to handle it. Consequently, we
recommend versioning the exported D-Bus APIs31.

APIs which the OEM does not want to make available on the inter-domain communications
link (for example, because they are not able to handle untrusted data, or are too powerful
to expose) must not be exported onto the D-Bus connection. This effectively forms a
whitelist of exposed services.

For each piece of functionality exposed by the AD, suitable safety limits must be applied
(requirement 6.13). If the implementation of that functionality already applies the safety
limits, nothing more needs to be done. Otherwise, the safety limits must be enforced in the
interface code which exports that functionality onto the inter-domain D-Bus connection.

Similarly, for each piece of functionality exposed by the AD, if it fails to respond to a call by
the inter-domain service, the service must return an error to the CD over the inter-domain
D-Bus connection, rather than timing out. This is especially important in systems where
the export layer is a set of C calls — the implementation must take care to ensure those
calls cannot block the inter-domain service.

If the vendor wants to implement per-API kill switches for services exported by the
automotive domain, these must be implemented in the export layer (see section 8.16).

8.7 CONSUMER–ELECTRONICS DOMAIN ADAPTER LAYER

Paired with the OEM-specific API export code in the automotive domain is an adapter layer
in the CE domain. This adapts the API exported by the services on the automotive domain
to the stable SDK APIs used by applications in the CE domain. The layer has an
implementation in each of the SDK services in the CE domain.

This adapter layer does not have a trust boundary — each part of it lies within the trust
domain of the relevant SDK service.

These adapters connect to a private D-Bus bus, which the inter-domain service in the CE
domain is also connected to. The inter-domain service exports the OEM APIs from the
automotive domain on this bus, and the adapters consume them.

The private bus could be implemented either by running dbus-daemon with a custom bus
configuration, or by implementing it directly in the inter-domain service, and having all
adapters connect directly to the service. In both cases, the trust boundary between the
adapters (within the trust domains of the SDK services) and the inter-domain service are
enforced.

8.8 INTERACTION OF THE EXPORT AND ADAPTER LAYERS

The interaction between the export and adapter layers is important in maintaining
compatibility between different versions of the AD and CD as they are upgraded separately.
The CD is typically upgraded much more frequently than the AD. Both are customised to
the OEM.

31 http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

8.8.1 INITIAL DEPLOYMENT

The OEM develops both layers, and stabilises an initial version of their inter-domain API,
using a version number (for example, 1). The export layer exports objects from the
automotive domain, and the adapter layer imports those same objects. There may be
functionality exposed on the objects which the SDK APIs currently do not support — in
which case, the adapter layer ignores that functionality.

8.8.2 CD IS UPGRADED, AD REMAINS UNCHANGED

A new release of Apertis is made, which expands the SDK APIs to support more
functionality. The OEM integrates this release of Apertis and updates their adapter layer to
tie the new SDK APIs to previously-unused objects from the inter-domain link.

The version number of the inter-domain API remains at 1.

8.8.3 AD IS UPGRADED, CD REMAINS UNCHANGED

The automotive domain OS is upgraded, and more vehicle functionality becomes available
to expose on the inter-domain connection. The OEM chooses to expose most of this
functionality using the inter-domain service. For some objects, this results in no API
changes. For other objects, it results in new methods being added, but no old ones are
changed. For some objects, it results in some old methods being removed or their
semantics changed. For these objects, the OEM now exports two interfaces on the inter-
domain service: one at version 1, exporting the old API; and one at version 2, exporting the
new API. The version number of other inter-domain APIs remains at 1.

The CE domain software remains unchanged, which means it continues to use the version
1 APIs. This continues to work because all objects on the inter-domain API continue to
export version 1 APIs (in addition to some version 2 APIs).

8.8.4 CD IS UPGRADED AGAIN

The next time the CE domain is upgraded, its adapter layer can be modified by the OEM to
use the new version 2 APIs for some of the services. If this updated version of the CE
domain is guaranteed to only be used with new versions of the AD, the adapter layer can
drop support for version 1 APIs. If the updated CE domain may be used with old versions of
the AD, it must support version 1 and version 2 (or just version 1) APIs, and use whichever it
prefers.

8.9 FLOW FOR A GIVEN SDK API CALL

In Figure 5, particular attention should be paid to the restrictions on the protocols in use
for each link. For the links between the application and the inter-domain service in the CE
domain, any version of the D-Bus protocol can be used, including kdbus or another future
version. This depends only on the dbus-daemon and D-Bus libraries available in the CE
domain. For the link between the two inter-domain services, the protocol must always be
at least D-Bus 1.0 over TCP over IPsec. If both peers support a later version of the protocol,
they may use it — but both must always support D-Bus 1.0 over TCP over IPsec. For the link
between the inter-domain service in the automotive domain and the OEM service,
whatever protocol the OEM finds most appropriate for implementing their export layer
should be used. This could be pure C calls from within the same process (no protocol at
all), or D-Bus, or kdbus, or QNX message passing, or something else entirely.

8.10 TRUSTED PATH TO THE AD

Providing a trusted input and output path between the user and the automotive domain is
out of scope for this design — it is a problem to be solved by the graphics sharing and
input handling designs. However, it is worth noting that the solution must not involve
communication (unauthenticated, or authenticated via the CE domain) over the inter-
domain link. If it did, a compromised CE domain could be used to forge this
communication and gain control of the trusted path to the AD — which likely results in a
large privilege escalation.

A trusted path should be implemented by direct communication between the input and

Figure 5: Apertis IDC message flow, following a message being sent from application to hardware;
the message flow is the same in reverse for message replies from the hardware

output devices and the automotive domain, or mediating such communication through
the hypervisor, which is trusted.

8.11 DEVELOPER MODE

In order to support connecting the CE domain from an SDK on a developer’s laptop to the
automotive domain in a development vehicle, the ‘separate boards setup with other
devices’ configuration must be used, with the CE domain and the automotive domain
connected to the developer’s network (which might have other devices on it).

In order to allow the SDK to connect, the vehicle must be in a ‘developer mode’. This is
because the CE domain is entirely untrusted when it is provided by the SDK, because the
developer may choose to disable security features in it (indeed, they may be working on
those security features).

Open question: What cryptography should be used to implement this authentication, and
the division of trust between development and production devices? A likely solution is to
only have the AD accept the CD connection if it connects with a ‘production’ key signed by
the vehicle OEM.

8.12 MOCK SDK IMPLEMENTATION

In order to allow applications to be developed against the Apertis SDK, implementations of
all the SDK APIs need to be provided as part of the official SDK virtual machine
distribution. These implementations need to be fully featured, otherwise application
developers cannot develop against the unimplemented features.

There are two implementation options:

1. Have an Apertis SDK adapter layer which provides the mock implementations, and
which does not use an inter-domain service or mock up any of the automotive
domain.

2. Write the mock implementations as stand-alone services which are logically part of
the automotive domain (even though there is no domain separation in the SDK).
Expose these services on the inter-domain link using an Apertis SDK export layer;
and adapt the services to the actual SDK APIs using an Apertis SDK adapter layer.
The inter-domain services would be running in the same domain (the SDK) and
would communicate over a loopback TCP socket (see Standalone setup).

Option #1 has a much simpler implementation, but option #2 means that the inter-domain
communications code paths are tested by all application developers. Similarly, option #1
introduces the possibility for behavioural differences between the mock adapter layer and
the production inter-domain communication system, which could affect how application
developers write their applications; option #2 reduces the potential for that considerably.

As option #2 uses the inter-domain service in the CE domain, it also allows for the
possibility of connecting the CE domain to a different automotive domain — rather than
the mock one provided by the SDK, a developer could connect to the automotive domain in
a development vehicle (section 8.11).

Hence, our recommendation is for option #2.

8.13 DEBUGGABILITY

The debuggability of the inter-domain communications link is important for many
reasons, from integrating two domains to bringing up a new automotive domain (with its
export and adapter layers) to developing a new SDK API.

Referring to Figure 1, debugging of:

• applications and the SDK services happens using normal tools and methods described
in the Debug and Logging design32;

• communications between the dbus-daemon (private bus) and inter-domain service (CE
domain) happens using normal D-Bus monitoring tools (such as Bustle33 or dbus-
monitor34), though this requires the developer to gain access to the private bus’
socket;

• communications between the inter-domain services happens using a special debug
option in the services (see below);

• the export layer and OEM services happens using tools and methods specific to how
the OEM has implemented the export layer.

If possible, all debugging should happen on the SDK side, in the adapter layer or above, as
this allows the greatest flexibility in debugging techniques — none of the communications
at that level are encrypted, so are accessible to a developer user with the appropriate
elevated permissions.

If the connection between the inter-domain services (the TCP/IPsec link between domains)
needs to be debugged, it can be complex, as any debugging tool needs to be able to
decrypt the IPsec encryption. Wireshark is able to do this, if given the encryption key in use
by the IPsec connection35. This key may change over the lifetime of a connection (as the
connection cookie is refreshed), and hence needs to be exported dynamically by the inter-
domain service. In order to allow debugging both ends of the connection, it should be
implemented in the protocol library (section 8.5). In the CE domain, it should be exposed
as a D-Bus interface on the private bus which is part of the adapter layer. This limits its
access to developers who have access to that bus.

Interface org.apertis.InterDomainConnection.Debug1 {
/* Mapping from IKEv1 initiator cookie to encryption key. */
readonly property a{ss} Ike1Keys;

/* Mapping from IKEv2 tuple of (initiator SPI, responder SPI) to tuple
 * of (SK_ei, SK_er, encryption algorithm, SK_ai, SK_ar, integrity
 * algorithm). Algorithms are enumerated types, with values to be

32 https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns
33 http://willthompson.co.uk/bustle/
34 http://dbus.freedesktop.org/doc/dbus-monitor.1.html
35 https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets

https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
http://dbus.freedesktop.org/doc/dbus-monitor.1.html
http://willthompson.co.uk/bustle/
https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns

 * documented by the implementation. Other parameters are provided as
 * hexadecimal strings to allow for varying key lengths. */
readonly property a((ss)(ssssussu)) Ike2Keys;

}

A new Lua plugin in Wireshark36 could connect to this interface and listen for signals of
updates to the connection’s keys, and use those to update Wireshark’s IKE decryption
table. Wireshark is the suggested debugging tool to use, as it is a mature network analysis
tool which is well suited to analysing the protocols being sent over the inter-domain
connection.

In the automotive domain, the key information provided by the protocol library should be
exposed in a manner which best fits the debugging infrastructure and tools available for
the automotive operating system.

In both domains, this interface must only be exposed in developer builds of the inter-
domain services. It must not be available in production, even to a user with elevated
privileges. To expose it would allow all inter-domain communications to be decrypted.

8.14 EXTERNAL WATCHDOG

There must be an external watchdog system which watches both the automotive and
consumer–electronics domains, and which restarts either of them if they crash and fail to
restart themselves.

In order to prevent one compromised domain from preventing a restart of the other
domain (a denial of service attack), each domain must only be able to send heartbeats to
its own watchdog, and not the watchdog of the other domain.

The implementation of the watchdog depends on the configuration:

• Standalone setup: No watchdog is necessary, as the configuration is not safety
critical.

• Basic virtualised setup: The watchdog should be a software component in the
hypervisor, exposed as virtualised watchdog hardware in the guests.

• Separate CPUs setup: A hardware watchdog on the board should be used, connected
to both domains. As an exception to the general principle that the CE domain should
not be allowed to access hardware, it must be able to access its own watchdog (and
must not be able to access the automotive domain’s watchdog).

• Separate boards setup: A hardware watchdog on each board should be used,
connected to the domain on that board.

• Separate boards setup with other devices: Same as the separate boards setup.

• Multiple CE domains setup: Same as the separate boards setup.

36 https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

8.15 TAMPER EVIDENCE AND HARDWARE ENCRYPTION

The basic design for providing a root of confidentiality and integrity for the system in
hardware should be provided by the Secure Boot design37 — this design can only assume
that some confidential encryption key is provided which is used to decrypt parts of the
system on boot which should remain confidential.

One possibility for implementing this is for a confidential key store to be provided by the
automotive domain, storing keys which encrypt the bootloader and root key store for the
CD. When booting the CD, the AD would decrypt its bootloader and hence its root key store,
making the keys necessary for inter-domain communications (amongst others) available
in the CD’s memory. Note that this suggestion should be ignored if it conflicts with
recommendations in the Secure Boot design, once that’s published.

A critical requirement of the system is that none of the keys for encrypting inter-domain
communications (or for protecting those keys) can be shared between vehicles — they
must be unique per vehicle (requirement 6.36). This implies that keys must be generated
and embedded into each vehicle as a stage in the imaging process for the domains.

A corollary to this is that none of those keys can be stored by the vendor, trusted dealer or
other global organisations associated with the vehicles; as to do so would provide a single
point of failure which, if compromised by an attacker, could reveal the keys for all vehicles
and hence potentially allow them all to be compromised easily.

Tamper evidence is an important requirement for the system (requirement 6.35), providing
the ability to determine if a vehicle has been tampered with in case of an accident or
liability claim.

The most appropriate way to provide tamper evidence for the hardware depends on the
hardware and how it is packaged in the vehicle. Typical approaches to tamper evidence
involve sealing the domain’s circuitry, including all access and I/O ports, in a casing which
is sealed with tamper evident seals38. If a garage or trusted vehicle dealer needs to access
the domain for maintenance or updates, they must break the seals, enter this in the
vehicle’s maintenance log, and replace the seals with new ones once maintenance is
complete.

Tamper evidence for software should be provided through the integrity properties of the
Secure Boot design, as in any trusted platform module system39.

8.16 DISABLING THE CE DOMAIN

The automotive domain must be able to disable the power supply to the CE domain (or
otherwise prevent it from booting), and must be able to prevent inter-domain
communications at the same time.

Preventing inter-domain communications should be implemented by having the
automotive domain inter-domain service read a ‘kill switch’ setting. If this is set, it should
close any open inter-domain communication links, and refuse to accept new ones while

37 As of February 2016 the Secure Boot design is still forthcoming
38 https://en.wikipedia.org/wiki/Security_seal
39 https://en.wikipedia.org/wiki/Trusted_Platform_Module

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Security_seal

the setting is still set.

Preventing the CE domain from booting can be done in a variety of ways, depending on the
hardware functionality available. For example, it could be done by controlling a solid-state
relay on the CE domain’s power supply. Or, if the CE domain implements secure boot, the
boot process could require the automotive domain to decrypt part of the CE domain
bootloader using a key known only to the automotive domain — if the kill switch is set, this
key would be unavailable.

Open question: What hardware provisions are available for controlling the power supply or
boot process of the CE domain? How should this integrate with the secure boot design?

The kill switch is intentionally kept simple, controlling whether all inter-domain
communications are enabled or disabled, and providing no finer granularity. This is
intended to make it completely robust — if support were added for selectively killing some
of the control APIs or data connections on the inter-domain communications link, but not
others, there would be much greater scope for bugs in the kill switch which could be
exploited to circumvent it.

If the OEM wants to provide finer grained kill switches for different APIs in the automotive
domain, they must implement them as part of those services, or as part of the export layer
which connects those services to the inter-domain service.

8.17 REPORTING MALICIOUS APPLICATIONS

There are three options for reporting malicious behaviour of applications to the Apertis
store:

1. Report from the inter-domain service in the automotive domain, based on error
responses from the OEM APIs.

2. Report from the inter-domain service in the CE domain, based on error responses
from the automotive domain.

3. Report from the SDK API adapter layers, based on error responses from the
automotive domain.

They are presented in decreasing order of reliability, and increasing order of helpfulness.

Option #1 is reliable (an attacker can only prevent a detected malicious action from being
reported by compromising the automotive domain), but not helpful (the automotive
domain does not have contextual information about the access, such as the application
bundle which originally made the request — bundle identifiers cannot be sent across the
inter-domain link as that would mean partially defining the OEM APIs). This option has the
additional disadvantage that it requires the AD to communicate directly with the Apertis
store without going via the CD, which likely means the AD is on the Internet and could
potentially be compromised by a Heartbleed-style vulnerability in a communication path
that was intended to be secure. Options #2 and #3 do not have this disadvantage, because
in those options it is the CE that needs to communicate on the Internet.

Option #3 is unreliable (an attacker can prevent a detected malicious action from being
reported by compromising that SDK service in the CE domain), but most helpful (the CE

domain knows all contextual information about the access, including the application
bundle identifier, parameters sent to the SDK API by the application, and the output of the
adapter layer which was sent to the inter-domain link).

We recommend option #3 as it is the most helpful, and we believe that the additional
contextual information it provides outweighs the potential loss of reports from most
severely compromised vehicles. This is one part of many which contribute to the security
of the system.

An alternative would be to implement two or all of the options, and leave it up to the
Apertis store software to combine or deduplicate the reports.

8.18 SUGGESTED ROADMAP

One the design has been reviewed, it can be compared to the existing state of the inter-
domain communication system, and a roadmap produced for how to reconcile the
differences (if there are any).

Open question: How does this design compare to the existing state of the inter-domain
communication system?

8.19 REQUIREMENTS

Open question: Once the design is finalised a little more, it can be related back to the
requirements to ensure they are all satisfied.

9 OPEN QUESTIONS
• 7: Are there any relevant existing systems to compare against?

• 8.3.1: What is the security of the IPsec protocol in its current (2015) state?

• 8.3.1: What is the performance of TCP and UDP over IPsec, TLS over TCP and DTLS over
UDP on the Apertis reference hardware?

• 8.3.2: What trade-off do we want between performance and testability for the
different transport layer configurations?

• 8.3.4: What more detailed configuration options can we specify for setting up IPsec?
For example, disabling various optional features which are not needed, to reduce
the attack surface. What IKE service should be used?

• 8.3.4: A lot of business logic for control over OEM licencing can be implemented by
the choice of the CA hierarchy used by the inter-domain communication system.
What business logic should be possible to implement?

• 8.3.4: Consider key control, revocation, protocol obsolescence, and various
extensions for pinning keys and protocols.

• 8.3.4: What can be done in the automotive domain to reduce the possibility of
exploits like Heartbleed affecting the inter-domain communications link? This is a
trade-off between the stability of AD updates (high; rarely released) and the pace of
IPsec and TLS security research and updates and the need for crypto-agility (fast).
Heartbleed was a bug in a bad implementation of an optional and not-very-useful
TLS extension.

• 8.3.5: How should the multiple CE configuration (section 8.3.2) interact with D-Bus
signals? Can the adapter layer perform the broadcast to all subscribers?

• 8.11: What cryptography should be used to implement this authentication, and the
division of trust between development and production devices? A likely solution is
to only have the AD accept the CD connection if it connects with a ‘production’ key
signed by the vehicle OEM.

• 8.16: What hardware provisions are available for controlling the power supply or boot
process of the CE domain? How should this integrate with the secure boot design?

• 8.18: How does this design compare to the existing state of the inter-domain
communication system?

• 8.19: Once the design is finalised a little more, it can be related back to the
requirements to ensure they are all satisfied.

10 SUMMARY OF RECOMMENDATIONS
Open question: Once the design is finalised a little more, and a suggested roadmap has
been produced (section 8.18), it can be summarised here.

11 APPENDIX: D-BUS COMPONENTS AND LICENSING
The terminology around D-Bus can sometimes be confusing; here are some details of its
components and their licensing.

• D-Bus is a protocol40 which defines an on-the-wire format for marshalling and
passing messages between peers, a type system for structuring those messages, an
authentication protocol for connecting peers, a set of transports for sending
messages over different underlying connection media, and a series of high-level
APIs for implementing common API design patterns such as properties and object
enumeration.
It has a reference implementation (libdbus and dbus-daemon), but these are by no
means the only implementations.
The protocol has had full backwards compatibility since 200641.

• A D-Bus daemon (for example: dbus-daemon, kdbus) is a process which arbitrates
communication between D-Bus peers, implementing multicast communications
(such as signals) without requiring all peers to connect to each other.
Different D-Bus daemons have different performance characteristics and licensing.
For example, kdbus runs in the kernel to improve performance by reducing context
switching overhead, at the cost of some features; dbus-daemon runs in user space
with more overhead, but is still quite performant.

• A D-Bus library (for example: libdbus, GDBus) is a set of code which implements the
D-Bus protocol for one peer, converting high-level D-Bus API calls into on-the-wire
messages to send to another peer or a D-Bus daemon to send to other peers.
Different D-Bus libraries have different performance characteristics and licensing.

11.1 LICENSING

• The D-Bus Specification is freely licensed and has no restrictions on who may
implement it or how those implementations are licensed.

• libdbus and dbus-daemon are both licensed under your choice of the AFLv2.142, or
the GPLv243 (or later versions).

◦ Hence, if the AFL license is chosen, libdbus and dbus-daemon may be used in
non-open-source products.

• GDBus is part of GLib, and hence is licensed under the LGPLv2.044 (or later versions).

40 http://dbus.freedesktop.org/doc/dbus-specification.html
41 http://dbus.freedesktop.org/doc/dbus-specification.html#stability
42 https://spdx.org/licenses/AFL-2.1.html
43 http://spdx.org/licenses/GPL-2.0+
44 http://spdx.org/licenses/LGPL-2.0+

http://spdx.org/licenses/LGPL-2.0+
http://spdx.org/licenses/GPL-2.0+
https://spdx.org/licenses/AFL-2.1.html
http://dbus.freedesktop.org/doc/dbus-specification.html#stability
http://dbus.freedesktop.org/doc/dbus-specification.html

12 APPENDIX: D-BUS PERFORMANCE
libdbus and dbus-daemon are reasonably performant, having been used in various low-
resource products (such as mobile phones) over the years. There have not been any
quantitative evaluations of their performance in terms of latency or memory usage
recently, but some have been done in the past454647.

As indicative numbers only, D-Bus (using dbus-python48 and dbus-daemon, not kdbus)
gives performance of roughly:

• 20,000 messages per second throughput

• 130MB per second bandwidth

• 0.1s end-to-end latency between peers for a given message

◦ This is likely an overestimate, as ping-pong tests written in C have given latency
of 200 sµ

• 2.5MB memory footprint (RSS) for dbus-daemon in a desktop configuration

◦ So this could likely be reduced if needed — the amount of message buffering
dbus-daemon provides is configurable

Note that these numbers are from performance evaluations on various versions of dbus-
daemon, so should be considered indicative of an order of magnitude only. As with all
performance measurements, accurate values can only be measured on the target system
in the target configuration.

The most commonly accepted disadvantage of using D-Bus with dbus-daemon is the end-
to-end latency needed to send a message from one peer, through the kernel, to the dbus-
daemon, then through the kernel again, to the receiving peer. This can be reduced by using
kdbus, which halves the number of context switches needed by implementing the D-Bus
daemon in kernel space49. However, kdbus has not yet been accepted into the upstream
kernel, and (as of February 2016) there is some concern that this might not happen due to
kernel politics. It can be integrated into distributions as a kernel module, although it relies
on a few features only available in kernel version 4.0 or newer. This means it should be
straightforward to integrate in the CD, but potentially not in the AD (and certainly not if the
AD doesn’t run Linux — in such cases, dbus-daemon can be used).

Overall, the performance of a D-Bus API depends strongly on the API design. Good D-Bus API
design50 eliminates redundant round trips (which have a high latency cost), and offloads
high-bandwidth or latency sensitive data transfer into side channels such as UNIX pipes,
whose identifiers are sent in the D-Bus API calls as FD handles51.

45 https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
46 http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
47 https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
48 http://www.freedesktop.org/wiki/Software/DBusBindings/
49 http://www.freedesktop.org/wiki/Software/systemd/kdbus/
50 http://dbus.freedesktop.org/doc/dbus-api-design.html
51 http://dbus.freedesktop.org/doc/dbus-specification.html#idp94469072

http://dbus.freedesktop.org/doc/dbus-specification.html#idp94469072
http://dbus.freedesktop.org/doc/dbus-api-design.html
http://www.freedesktop.org/wiki/Software/systemd/kdbus/
http://www.freedesktop.org/wiki/Software/DBusBindings/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf

13 APPENDIX: SOFTWARE VERSUS HARDWARE ENCRYPTION
The choice about whether to use software or hardware encryption is a tradeoff between the
advantages and disadvantages of the options. There are actually several ways of providing
‘hardware encryption’, which should be considered separately. In order from simplest to
most complex:

• Encryption acceleration instructions in the processor, such as the AES instruction
set52, CLMUL53 or the ARM cryptography extensions54. These are available in most
processors now, and provide assembly instructions for performing expensive
operations specific to certain encryption standards, typically AES, SHA and
Galois/Counter Mode (GCM) for block ciphers. Intel architectures have the most
extensions, but ARM architectures also have some.

• Secure cryptoprocessor55. These are separate, hardened hardware devices which
implement all encryption operations and some key storage and handling within a
tamper-proof chip. They are conceptually similar to hardware video decoders — the
CPU hands off encryption operations to the coprocessor to happen in the
background. They typically do not have their own memory.

• Hardware security module56 (HSM). These are even more hardened secure
cryptoprocessors, which typically come with their own tamper-proof memory and
supporting circuitry, including tamper-proof power supply. They handle all aspects
of encryption, including all key storage and management (such that keys never
leave the HSM).

13.1 SOFTWARE ENCRYPTION (WITHOUT ENCRYPTION ACCELERATION
INSTRUCTIONS)

• Lowest encryption bandwidth.

• Highest attack surface area, as keys and in-progress encryption values have to be
stored in system memory, which can be read by an attacker with physical access to
the hardware.

• Certain versions of some cryptographic libraries are FIPS-certified57, but not all.
GnuTLS has been FIPS certified in various devices, but is not routinely certified58.
OpenSSL is not routinely certified, but provides a OpenSSL FIPS Object Module59
which is certified as a drop-in replacement for OpenSSL, provided that it’s used
unmodified. The Linux kernel’s IPsec support has been certified in Red Hat
Enterprise Linux 6, but is not routinely certified60.

52 https://en.wikipedia.org/wiki/AES_instruction_set
53 https://en.wikipedia.org/wiki/CLMUL_instruction_set
54 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
55 https://en.wikipedia.org/wiki/Secure_cryptoprocessor
56 https://en.wikipedia.org/wiki/Hardware_security_module
57 https://en.wikipedia.org/wiki/FIPS_140-2
58 http://www.gnutls.org/manual/html_node/Certification.html
59 https://www.openssl.org/docs/fipsvalidation.html
60 https://access.redhat.com/documentation/en-

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://www.openssl.org/docs/fipsvalidation.html
http://www.gnutls.org/manual/html_node/Certification.html
https://en.wikipedia.org/wiki/FIPS_140-2
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://en.wikipedia.org/wiki/AES_instruction_set

• Cheaper than hardware.

• Provides the possibility of upgrading to use different encryption algorithms in
future.

• Possible to check the software implementation for backdoors, although it’s a lot of
work. Some of this work is being done by other users of open source encryption
software61.

13.2 SOFTWARE ENCRYPTION (WITH ENCRYPTION ACCELERATION
INSTRUCTIONS)

• Same advantages and disadvantages as software encryption without encryption
acceleration instructions, except that the use of acceleration gives a higher
encryption bandwidth (on the order of a factor of 10 improvement).

• Same software interface as without acceleration.

• Both TLS and IPsec provide various cipher suite options, at least some of which
would benefit from hardware acceleration — both use AES-GCM62 for data
encryption, which benefits from AES instructions.

13.3 SECURE CRYPTOPROCESSOR

• Higher encryption bandwidth.

• Reduced attack surface area, as keys and in-progress encryption values are handled
within the encryption hardware, rather than in general memory, and hence cannot
be accessed by an attacker with physical access. Keys may still leave the
cryptoprocessor, which gives some attack surface.

• Typical secure cryptoprocessors have tamper evidence features in the hardware.

• Typically hardware is FIPS-certified.

• More expensive than software.

• Provides a limited set of encryption algorithms, with no option to upgrade them
once it’s fixed in silicon.

• No possibility to audit the hardware implementation to check for backdoors, so you
have to trust that the hardware vendor has not been secretly required to provide a
backdoor by some government.

• Typical cryptoprocessors originate from mobile or embedded networking hardware,
both of which need to support TLS, and hence cryptoprocessors typically have
support for AES, DES, 3DES and SHA. This is sufficient for accelerating the common

US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-
Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html

61 http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
62 https://en.wikipedia.org/wiki/Advanced_Encryption_Standard,

https://en.wikipedia.org/wiki/Galois/Counter_Mode

https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html

cipher suites in TLS and IPsec.

• Have to be supported by the Linux kernel crypto API (/dev/crypto) in order to be
usable from software.

13.4 HARDWARE SECURITY MODULE

• Highest encryption bandwidth.

• Minimal attack surface area, with keys never leaving the HSM.

• All hardware is tamper-proof and tamper-evident, and typically can destroy stored
keys automatically if tampering is detected.

• Hardware is almost universally FIPS-certified.

• Most expensive.

• Provides a range of encryption algorithms, but with no option to upgrade them.

• No possibility to audit the hardware implementation to check for backdoors, so you
have to trust that the hardware vendor has not been secretly required to provide a
backdoor by some government.

• Some modules can handle encryption of network streams transparently, taking a
plaintext network stream as input and handling all TLS or IPsec operations for it
with peers.

13.5 CONCLUSION

According to one evaluation63, using encryption acceleration instructions should reduce
the number of cycles per byte for AES encryption from 28 to 3.5. Assuming the inter-
domain connection is being used to transmit a HD video at 250kB·s-1, that means
encryption requires 7MHz of CPU compute without acceleration, and 875kHz with it.
Performing symmetric encryption on a data stream doesn’t significantly increase the
required memory bandwidth compared to copying the stream around without encryption.

Hence, overall, if we assume a peak bandwidth requirement on the inter-domain
communications link on the order of 250kB·s-1 then using software encryption with
acceleration instructions should give sufficient performance.

The hardware security (tamper-proofing) provided by a HSM is overkill for an in-vehicle
system, and is better suited to data centres or military equipment. We recommend either
using software encryption with acceleration, or a secure cryptoprocessor, depending on
the balance of the advantages and disadvantages of the two for the particular OEM and
vehicle. For the purposes of this design, both options provide all features necessary for
inter-domain communications.

63 https://groups.google.com/forum/#!msg/cryptopp-users/5x-vu0KwFRk/CO8UIzwgiKYJ

https://groups.google.com/forum/#!msg/cryptopp-users/5x-vu0KwFRk/CO8UIzwgiKYJ

14 APPENDIX: AUDIO AND VIDEO DECODING
As a system which handles a lot of multimedia, deciding where to perform audio and video
decoding is important. There are two major considerations:

• minimising the amount of raw communications bandwidth which is needed to
transmit audio or video data between the domains; and

• ensuring that an exploit does not give access to arbitrary memory from either
domain (especially not the automotive domain).

The discussion below refers to video encoding and decoding, but the same considerations
apply equally well to audio.

Software encoding is a large CPU burden, and introduces quality loss into videos — so
decoding and re-encoding videos in one domain to check their well-formedness is not a
viable option. If decoding is being performed, the decoded output might as well be used in
that form, rather than being re-encoded to be sent to the other domain.

In order to avoid spending a lot of CPU time and CPU–memory bandwidth on video
decoding, it should be performed by hardware. However, this hardware does not
necessarily have to be in the domain where the encoded video originates. For example, it is
entirely possible for videos to be sent from the CD to be decoded in the AD.

The original designs which were discussed in combination with the GPU video sharing
design planned to create a GStreamer plugin in the CD which treats the AD as a hardware
video decoder which accepts encoded video, decodes it, and returns a handle which can be
passed to the GL scene being output by the CD, via a GL extension (similar to
EXT_image_dma_buf_import64). This is the same model as used for ‘normal’ hardware
decoders, and ensures that decoded video data remains within the AD, rather than being
sent back over the inter-domain communications link (which would incur a very high
bandwidth cost, on the order of 200MB·s-1).

Regarding security, a hardware decoder is typically a DMA-capable65 peripheral which
means that, unless constrained by an IOMMU66, it can access all areas of physical memory.
The threat here is that a malicious or corrupt video could trigger the decoder into reading
or writing to areas of memory which it shouldn’t, which could allow it to overwrite parts of
the (hypervisor) operating system or running applications. This concern exists regardless
of which domain is driving the decoder. We highly recommend that hardware is chosen
which uses an IOMMU to restrict the access a video decoder has to physical memory.

Note that the same security threat applies to the GPU, which has direct access to physical
memory (if shared with the CPU — some systems use dedicated memory for the GPU, in
which case the issue isn’t present). GPUs have a much larger attack surface, as they have
to handle complex GL commands which are provided from untrusted sources, such as
WebGL.

We recommend investigating the hardening and security applied to video decoders on the

64 https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
65 https://en.wikipedia.org/wiki/Direct_memory_access
66 https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit

https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://en.wikipedia.org/wiki/Direct_memory_access
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt

particular hardware platforms in use, but there is not much which can be done by software
to improve their security if it is lacking — the performance cost is too high.

	Document Change Log
	1 Introduction
	2 Terminology and concepts
	2.1 Automotive domain
	2.2 Consumer-electronics domain
	2.3 Trusted path
	2.4 Control stream
	2.5 Data stream
	2.6 Traffic control

	3 Use cases
	3.1 Standalone setup
	3.2 Basic virtualised setup
	3.3 Separate CPUs setup
	3.4 Separate boards setup
	3.5 Separate boards setup with other devices
	3.6 Multiple CE domains setup
	3.7 Touchscreen events
	3.8 Wi-Fi access
	3.9 Bluetooth access
	3.10 Audio transfer
	3.11 Video decoding
	3.11.1 Video or audio decoder bugs

	3.12 Tinkering vehicle owner on the network
	3.13 Tinkering vehicle owner on the boards
	3.14 Support multiple AD operating systems
	3.15 Before-market CD upgrades
	3.16 After-market CD upgrades
	3.17 Testability
	3.18 Malicious CD
	3.19 After-market upgrade of a domain
	3.20 Power cycle independence of domains (CD down)
	3.21 Power cycle independence of domains (AD down, single screen)
	3.22 Power cycle independence of domains (AD down, multiple screens)
	3.23 Temporary communications problem
	3.24 New version of AD software
	3.25 New version of AD interfaces
	3.26 Unsupported AD interfaces
	3.27 Contacts sharing
	3.28 Protocol compatibility
	3.28.1 kdbus protocol compatibility

	3.29 Navigation system
	3.30 Marshalling resource usage
	3.31 Feedback for malicious applications
	3.32 Compromised CD with delayed fix
	3.33 Denial of service through flooding
	3.34 Malicious CD UI
	3.35 Plug-and-play CD device
	3.36 Connecting an SDK to a development vehicle
	3.36.1 Connecting an SDK to a production vehicle

	4 Security model
	4.1 Attackers
	4.1.1 Vehicle’s owner
	4.1.2 Passenger
	4.1.3 Third parties
	4.1.4 Trusted dealer

	4.2 Security domains
	4.3 Security model

	5 Non-use-cases
	5.1 Production CE domain used in multiple configurations

	6 Requirements
	6.1 Separated transport layer
	6.1.1 Transport to SDK APIs
	6.1.2 Transport over virtio
	6.1.3 Transport over a private Ethernet link
	6.1.4 Transport over a private Ethernet link to a development vehicle
	6.1.5 Transport over a shared Ethernet link

	6.2 Message integrity and confidentiality in transport layer
	6.3 Reliability and error checking in transport layer
	6.4 Mutual authentication between domains
	6.5 Separate authentication for developer and production mode devices
	6.6 Individually addressed domains
	6.7 Traffic control for latency
	6.8 Traffic control for bandwidth
	6.9 Traffic control for frequency
	6.10 Separation of control and data streams
	6.11 No untrusted access to AD hardware
	6.12 Trusted path for users to update the CD operating system
	6.13 Safety limits on AD APIs
	6.14 Rate limiting on control messages
	6.15 Ignore unrecognised messages
	6.16 Portable transport layer
	6.17 Support push mode and pull mode communications
	6.18 OEM AD integration API
	6.19 Flexibility in OEM AD integration API
	6.20 Inflexibility in OEM AD integration API
	6.21 Stability in inter-domain communications protocol
	6.22 Testability of protocols
	6.23 Testability of protocol parsers and writers
	6.24 Testability of processes
	6.25 CD system services separated from transport layer
	6.26 No dependency on CD specific hardware
	6.27 Immediate error response if service on peer is unavailable
	6.28 Immediate error response if peer is unavailable
	6.29 Timeout error response if peer does not respond
	6.30 All inter-domain communications APIs are asynchronous
	6.31 Reconnect to peer as soon as it is available
	6.32 External domain watchdog
	6.33 Reporting system for malicious applications
	6.34 Ability to disable the consumer–electronics domain
	6.35 Tamper evidence
	6.36 No global keys in vehicles

	7 Existing inter-domain communication systems
	8 Approach
	8.1 Overall architecture
	8.2 Security domains
	8.3 Protocol design
	8.3.1 IPsec versus TLS
	8.3.2 Configuration designs
	Standalone setup
	Basic virtualised setup
	Separate CPUs setup
	Separate boards setup
	Separate boards setup with other devices
	Multiple CE domains setup

	8.3.3 Addressing and peer discovery
	8.3.4 Encryption
	8.3.5 Control protocol
	8.3.6 Data connections

	8.4 Traffic control
	8.5 Protocol library and inter-domain services
	8.6 Automotive domain export layer
	8.7 Consumer–electronics domain adapter layer
	8.8 Interaction of the export and adapter layers
	8.8.1 Initial deployment
	8.8.2 CD is upgraded, AD remains unchanged
	8.8.3 AD is upgraded, CD remains unchanged
	8.8.4 CD is upgraded again

	8.9 Flow for a given SDK API call
	8.10 Trusted path to the AD
	8.11 Developer mode
	8.12 Mock SDK implementation
	8.13 Debuggability
	8.14 External watchdog
	8.15 Tamper evidence and hardware encryption
	8.16 Disabling the CE domain
	8.17 Reporting malicious applications
	8.18 Suggested roadmap
	8.19 Requirements

	9 Open questions
	10 Summary of recommendations
	11 Appendix: D-Bus components and licensing
	11.1 Licensing

	12 Appendix: D-Bus performance
	13 Appendix: Software versus hardware encryption
	13.1 Software encryption (without encryption acceleration instructions)
	13.2 Software encryption (with encryption acceleration instructions)
	13.3 Secure cryptoprocessor
	13.4 Hardware security module
	13.5 Conclusion

	14 Appendix: Audio and video decoding

