
Apertis Security
Design

Author: Felipe Zimmerle, Mateu Batle
Contributors: Gustavo Noronha, Sjoerd Simons, Simon McVittie
Version: 1.1.4
Status: Draft
Date: 16 November 2015
Last Reviewer: Ekterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.



DOCUMENT CHANGE LOG
Version Date Changes

1.1.4 2015-11-16 • Delete obsolete document properties
• Replace project to Apertis
• Fix links to wiki.gnome.org
• Improve wording

1.1.3 2015-08-18 • Turn all URLs in footnotes into hyperlinks

1.1.2 2015-08-17 • Address review comments

1.1.1 2015-08-10 • Describe how to apply the general security policy to new 
platform services

• Mention communication between application bundles
• Correct a misleading description of the Android NDK
• Update comparison of iOS Seatbeat to Linux LSMs
• Update status of Smack in D-Bus and other upstream 

projects
• Mention that fine-grained D-Bus access control is not 

necessarily as useful as it first appears
• Note the unresolved issue of where to get the secret for 

full-disk encryption
• Briefly describe the xdg-app framework, and recommend 

further evaluation
• Clarify the similarities and differences between AppArmor 

and seccomp

1.1.0 2015-06-05 • Rename the platform to Apertis
• Add Terminology section defining privilege, trust, integrity, 

confidentiality, availability
• Add a first attempt at documenting the security model and 

threat model
• Update the section on Android to mention multi-user and 

SELinux
• Update the section on AppArmor to mention upstreaming 

of AppArmor D-Bus mediation
• New chapter about polkit (formerly PolicyKit), the 

motivation, what it does for us already, and how we could 
enhance it for Apertis

• Note that WebKit2 has been brought back into scope

1.0 2014-12-15 • Updated to new template

0.7 2013-02-18 • Recommendation about where seccomp can be used 
added to chapter 17

0.6 2013-02-07 • Explain why creating a profile for /bin/ln is not required 
and not effective to protect against disabling of profiles to 
section 5.4.1



• Several spelling fixes
• Explain strategies for protecting proprietary libraries from 

apps in section 5.4.2
• Reworded paragraph that explains systemd starts each 

service in its own cgroup and why that is a good idea in 
chapter 9

0.5 2013-01-16 • Added several links that were missing
• Added link to iOS security paper
• Added small section about MIME and other types of 

association being a potential attack vector
• Added a slightly bigger explanation about how Android 

detects an application is not responding to section 4.1
• Added links for all MAC solutions, sections 5.1.1, 5.1.2,

5.1.3, and 5.1.4
• Explained a bit more why the usual problems distros that 

use AppArmor face regarding using linking, copying and 
mount points to game the system are properly addressed 
by the white-list approach – in section 5.1.4

• Added missing reference to System updates & rollback / 
Applications designs to section 5.1.4

• Fixed link to SELinux performance benchmark in section
5.3

• Added a note to say aa-disable isn't installed in the target 
image by default 5.4.1

• New section, 5.4.2, to briefly discuss AppArmor 
abstractions as a tool to write rules for libraries

• New chapter: 20 Further discussion
• Made the meaning of 'D-Bus service' more explicit in 

chapter 9
• Explain having the driver assistance system 

communication daemon be started as a system service by
systemd will make it run in its own cgroup and that that is 
a good idea, in chapter 9

• Explained in chapter 10 that locking down the browser is 
what protects the system from eventual browser exploits

• Readded the discussion about porting WebKit Clutter to 
the WebKit2 architecture to chapter 10

• Added link to GCC's SSP page on Ubuntu's wiki to 
chapter 14, and reworked the text to match current state

• New chapter, 17, discusses seccomp
• New chapter, 19, discusses potential issues and solutions 

for a developer mode in the device
• Mention the discussion about the limitations of integrity 

checks and alternative methods of protecting file system 
integrity from section 16.1 in chapter 12

• Updated information regarding D-Bus mediation support in



AppArmor (in section 5.1.4)
• Added a paragraph that talks about the differences in 

terms of features between AppArmor and SELinux 
mediation to section 5.2

0.4.3 2012-05-24 • Add more information on techniques implemented by 
browser engines and applications to protect against 
Internet threats

• New section about other file types that need attention,
10.1 Other sources of potential exploitation

• New section about performance impact of the various 
MAC systems (5.3)

• New chapter about how the app store vetting process can 
be used to improve security (18)

• New section about how X/D-Bus/3D could be worked 
around in LXC (15.1.1)

0.4.2 2012-05-15 • Added information about limiting I/O with cgroups
• Added a couple lines about missing functionality in MAC 

modules
• Added information about how other platforms (Android -

4.1, Bada - 4.2, iOS - 4.3) deal with security
• Added sample of how AppArmor deals with symbolic links
• Added more accurate information about SMACK 

maintainership and development
• Added small comment (5.4.4) on limiting root power
• Added section (5.4.5) about applying a least-privilege 

policy by default with white-listing of resources for the 
applications

• Extensive rewrite of chapter 9, Protecting the driver 
assistance system from attacks

0.4.1 2012-05-11 • Updated title and file name to follow Document Naming 
Scheme

0.3.3 2012-02-24 • Addressed review comments
• Section about Internet threats

0.3.2 2012-02-22 • Rewrite of overview to describe sections and what they 
address

• Rewrite of section on IMA
• General review of all sections
• Merged data encryption and removal sections into one

0.3.0 2012-02-20 • Overall review of wording, reorganization of the discussion
about LSM modules

0.2.8 2012-02-14 • Added more information about why AppArmor vs SMACK;
• Added more information on secure software update, disk 

encryption and data removal.



0.2.3 2012-01-29 • Changed template
• Add title page footer



Table of Contents
Document Change Log.............................................................................................2
1 Overview...............................................................................................................7
2 Terminology...........................................................................................................8

2.1 Privilege.........................................................................................................8
2.2 Trust...............................................................................................................8
2.3 Integrity, confidentiality and availability........................................................8

3 Security boundaries and threat model..................................................................9
3.1 Security between applications.......................................................................9
3.2 Communication between applications.........................................................10
3.3 Security between users................................................................................10
3.4 Security between platform services.............................................................11
3.5 Security between the device and the network.............................................11
3.6 Physical security..........................................................................................12

4 Solutions adopted by popular platforms.............................................................13
4.1 Android.........................................................................................................13
4.2 Bada.............................................................................................................14
4.3 iOS................................................................................................................15

5 Mandatory Access Control...................................................................................16
5.1 Linux Security Modules (LSM)......................................................................16

5.1.1 SELinux..................................................................................................16
5.1.2 TOMOYO Linux.......................................................................................17
5.1.3 SMACK...................................................................................................17
5.1.4 AppArmor..............................................................................................17

5.2 Comparison..................................................................................................19
5.3 Performance impact.....................................................................................21
5.4 Conclusion....................................................................................................22

5.4.1 AppArmor Policy and management examples.......................................23
5.4.2 Profiles for libraries................................................................................24
5.4.3 Application installation and upgrades...................................................25
5.4.4 A note about root..................................................................................25
5.4.5 Implementing a white-list approach......................................................25

6 polkit (PolicyKit)..................................................................................................28
6.1 Motivation for polkit.....................................................................................28
6.2 polkit's solution............................................................................................29
6.3 Recommendation.........................................................................................30

6.3.1 Alternative design: rely entirely on AppArmor checks...........................30
7 Resource Usage Control......................................................................................32

7.1 Imposing limits on I/O for block devices.......................................................32
8 Network filtering.................................................................................................34
9 Protecting the driver assistance system from attacks........................................35

9.1 Protecting devices whose usage is restricted...............................................35
10 Protecting the system from Internet threats.....................................................36

10.1 Other sources of potential exploitation......................................................37
10.1.1 Launching applications based on MIME type.......................................37



11 Secure Software Distribution............................................................................39
12 Secure Boot.......................................................................................................40
13 Data encryption and removal...........................................................................41

13.1 Data encryption.........................................................................................41
13.2 Data removal..............................................................................................41

14 Stack Protection................................................................................................42
15 Confining applications in containers.................................................................43

15.1 LXC Containment........................................................................................43
15.1.1 Making X11, D-Bus and 3D work with LXC...........................................43

15.2 The xdg-app framework.............................................................................44
16 The IMA Linux Integrity Subsystem...................................................................45

16.1 Conclusion regarding IMA and EVM............................................................46
17 Seccomp...........................................................................................................47
18 The role of the app store process for security...................................................49
19 How does security affect developer usage of a device?...................................50
20 Further discussion.............................................................................................51

Index of Tables
Table 1: Comparison of LSM features.....................................................................15
Table 2: Comparison of LSM adoption and maturity...............................................16

Index of Illustrations
Illustration A: Secure boot signing and verification process...................................32

Index of Code Listings
Listing 1: AppArmor restriction applying to file system links.................................14
Listing 1: AppArmor policy shipped for ping in Ubuntu..........................................18
Listing 2: A symbolic link to disable the ping AppArmor policy..............................19
Listing 4: Sample profiles for implementing white-listing......................................22
Listing 5: Effects of white-list approach profiles.....................................................22



1 OVERVIEW
This document discusses and details solutions for the security requirements of the
Apertis system.

Section 3, Security boundaries and threat model describes the various aspects of
the security model, and the threat model for each.

Local  attacks  to  obtain  private  data  or  damage  the  system,  including  those
performed by malicious applications that get installed in the device somehow or
through exploiting a vulnerable application are covered in section  5, Mandatory
Access Control (MAC). It is also the main line of defense against malicious email
attachments and web content, and for minimizing the damage that root is able to
do are also mainly covered by the MAC infrastructure. This is the main security
infrastructure of the system, and the depth of the discussion is proportional to its
importance.

Denial of Service attacks through abuse of system resources such as CPU and
memory are covered by section  7, Resource Usage Control.  Attacks coming in
through  the  device's  network  connections  and  possible  strategies  for  firewall
setup are covered in section 8, Network filtering.

Attacks to the driver assistance system coming from the infotainment system are
handled by many of these security components, so it is discussed in a separate
section: 9, Protecting the driver assistance system from attacks. Internet threads
are the main subject of 10, Protecting the system from Internet threats.

Section 11, Secure Software Distribution discusses how to provide ways to make
installing  and  upgrade  software  secure,  by  guaranteeing  packages  are
unchanged, undamaged and coming from a trusted repository.

Secure boot for protecting the system against attacks done by having physical
access to the device is discussed in section  12, Secure Boot. Section  13, Data
encryption and removal, is concerned with features whose main focus is to protect
the privacy of the user.

Section  14, Stack Protection, discusses simple but effective techniques that can
be used to harden applications and prevent exploitation of vulnerabilities. Section
15, Confining applications in containers, discusses the pros and cons of using the
lightweight Linux Containers infrastructure for a system like Apertis.

Section  16, The  IMA  Linux  Integrity  Subsystem,  wraps  up  this  document  by
discussing how the Integrity Measurement Architecture works and what features it
brings to the table, and at what cost.



2 TERMINOLOGY

2.1     PRIVILEGE  

A component that is able to access data that other components cannot is said to 
be privileged. If two components have different privileges – that is, at least one 
of them can do something that the other cannot – then there is said to be a 
privilege boundary between them.

2.2     TRUST  

A trusted component is a component that is technically able to violate the 
security model (i.e. it is relied on to enforce a privilege boundary), such that errors
or malicious actions in that component could undermine the security model.  The 
trusted computing base (TCB) is the set of trusted components. This is 
independent of its quality of implementation – it is a property of whether the 
component is relied on in practice, and not a property of whether the component 
is trustworthy, i.e. safe to rely on. For a system to be secure, it is necessary that
all of its trusted components be trustworthy.

One subtlety of Apertis' app-centric design1 is that there is a privilege boundary 
between application bundles even within the context of one user. As a result, a 
multi-user design has two main layers in its security model: system-level security 
that protects users from each other, and user-level security that protects a user's 
apps from each other. Where we need to distinguish between those layers, we will
refer to the TCB for security between users or the TCB for security 
between app bundles respectively.

2.3           I      NTEGRITY, CONFIDENTIALITY AND AVAILABILITY  

Many documents discussing security policies divide the desired security 
properties into integrity, confidentiality and availability. The definitions used here 
are taken from the USA National Information Assurance Glossary2.

Integrity is the property that data has not been changed, destroyed, or lost in an 
unauthorized or accidental manner. For example, if a malicious application altered
the user's contact list, that would be an integrity failure.

Confidentiality is the property that information is not disclosed to system 
entities (users, processes, devices) unless they have been authorized to access 
the information. For example, if a malicious application sent the user's contact list 
to the Internet, that would be a confidentiality failure.

Availability is the property of being accessible and usable upon demand by an 
authorized entity. For example, if an application used so much CPU time, memory 
or disk space that the system became unusable (a denial of service attack), or if a

1 See the Applications design document, available from https://wiki.apertis.org/ConceptDesigns. 
This document was written with reference to version 0.5.4 of the Applications design document.

2 Committee on National Security Systems, CNSS Instruction No. 4009 National Information 
Assurance (IA) Glossary, April 2010. 
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf

http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
https://wiki.apertis.org/ConceptDesigns


security mechanism incorrectly denied access to an authorized entity, that would 
be an availability failure.



3 SECURITY BOUNDARIES AND THREAT MODEL
This section discusses the security properties that we aim to provide.

3.1     SECURITY BETWEEN APPLICATIONS  

The Apertis platform provides for installation of application bundles, which may 
come from the platform developer or third parties. These are described in the 
Applications design document.

Our model is that there is a trust boundary between these application bundles, 
providing confidentiality, integrity and availability. In other words, an application 
bundle should not normally be able to read data stored by another application 
bundle, alter or delete data stored by the other application bundle, or interfere 
with the operation of the other application bundle. As a necessary prerequisite for 
those properties, processes from an application bundle must not be able to gain 
the effective privileges of processes or programs from another application bundle 
(privilege escalation).

In addition to the application bundles, the Apertis platform (defined in the 
Applications design document, and including libraries, system services, and any 
user-level services that are independent of application bundles) has higher 
privilege than any particular application bundle. Similarly, an application bundle 
should not in general be able to read, alter or delete non-application data stored 
by the platform, except for where the application bundle has been granted 
permission to do so, such as a navigation application reading location data (a 
“least-privilege” approach); and the application bundle must not be able to gain 
the effective privileges of processes or programs from the platform.

The threat model here is to assume that a user installs a malicious application, or 
an application that has a security flaw leading to an attacker being able to gain 
control over it. The attacker is presumed to be able to execute arbitrary code in 
the context of the application.

Our requirement is that the damage that can be done by such applications is 
limited to: reading files that are non-sensitive (such as read-only OS resources) or 
are specifically shared between applications; editing or deleting files that are 
specifically shared between applications; reducing system performance, but to a 
sufficiently limited extent that the user is able to recover by terminating or 
uninstalling the malicious or flawed application; or taking actions that the 
application requires for its normal operation. 

Some files, particularly large media files such as music, might be specifically 
shared between applications; such files do not have any integrity, confidentiality 
or availability guarantees against a malicious or subverted application. This is a 
trade-off for usability, similar to Android's 
Environment.getExternalStorageDirectory().

To apply this security model to new platform services, it is necessary for those 
platform services to have a coherent security model, which can be obtained by 
classifying any data stored by those platform services using questions similar to 
these:



• Can it be read by all applications, applications with a specific privilege flag, 
specific applications (for example the application that created it), or by 
some combination of those?

• Can it be written by all applications, applications with a specific privilege 
flag, specific applications, or some combination of those?

It is also necessary to consider whether data stored by different users using the 
same application must be separated (see section 3.3, Security between users).

 For example, a platform service for downloads might have the policy that each 
application's download history can be read by the matching application, or by 
applications with a “Manage Downloads” privilege (which might for instance be 
granted to a platform Settings application).

As another example, a platform service for app-bundle installation might have the
policy the trusted “Application Installer” HMI is the only component permitted to 
install or remove app-bundles. Depending on the desired trade-off between 
privacy and flexibility, the policy might be that any application may read the list of
installed app-bundles, that only trusted platform services may read the list of 
installed app-bundles, or that any application may obtain a subset of the list 
(bundles that are considered non-sensitive) but only trusted platform services 
may read the full list.

A service can be considered to be secure if it implements its security policy as 
designed, and that security policy is appropriate to the platform's requirements.

3.2     COMMUNICATION BETWEEN APPLICATIONS  

In a system that supports capabilities such as data handover between 
applications, it is likely that pairs of application bundles can communicate with 
each other, either mediated by platform services or directly. The Interface 
Discovery3 and Data Sharing4 designs on the Apertis wiki have more information 
on this topic.

The mechanisms for communicating between application bundles, or between 
application bundle and the platform, are to be classified into public and non-public
interfaces. Application bundles may enumerate all of the providers of public 
interfaces and may communicate with those providers, but it is not acceptable for 
application bundles to enumerate or communicate with the providers of non-
public interfaces. The platform is considered to be trusted, and may communicate
with any public or non-public interface.

The security policy described here is one of many possible policies that can be 
implemented via the same mechanisms, and could be replaced or extended with 
a finer-grained security policy at a later date, for example one where applications 
can be granted the capability to communicate with some but not all non-public 
interfaces.

3 https://wiki.apertis.org/Interface_discovery
4 https://wiki.apertis.org/Data_sharing

https://wiki.apertis.org/Data_sharing
https://wiki.apertis.org/Interface_discovery


3.3     SECURITY BETWEEN USERS  

The Apertis platform is potentially a multi-user environment; see the Multiuser 
design document for full details. This results in a two-level hierarchy: users are 
protected from each other, and within the context of a user, apps are protected 
from other apps.

In at least some of the possible multi-user models described in the Multiuser 
design document, there is a trust boundary between users, again providing 
confidentiality, integrity and availability (see above). Once again, privilege 
escalation must be avoided.

As with security between applications, some files (perhaps the same files that are 
shared between applications) might be specifically shared between users. Such 
files do not have any integrity, confidentiality or availability guarantees against a 
malicious user. Android's Environment.getExternalStorageDirectory() is one 
example of a storage area shared by both applications and users.

3.4     SECURITY BETWEEN PLATFORM SERVICES  

Within the platform, not all services and components require the same access to 
platform data.

Some platform components, notably the Linux kernel, are sufficiently highly-
privileged that it does not make sense to attempt to restrict them, because 
carrying out their normal functionality requires sufficiently broad access that they 
can violate one of the layers of the security model. As noted in section 2, 
Terminology, these components are said to be part of the trusted computing base 
for that layer; the number and size of these components should be minimized, to 
reduce the exposure of the system as a whole.

The remaining platform components have considerations similar to those applied 
to applications: they should have “least privilege”. Because platform components 
are part of the operating system image, they can be assumed not to be malicious;
however, it is desirable to have “defence in depth” against design or 
implementation flaws that might allow an attacker to gain control of them. As 
such, the threat model for these components is that we assume an attacker gains 
control over the component (arbitrary code execution), and the desired property is
that the integrity, confidentiality and availability impact is minimized, given the 
constraint that the component's privileges must be sufficient for it to carry out its 
normal operation.

Note that the concept of the trusted computing base applies to each of the two 
layers of the security policy. A system service that communicates with all users 
might be part of the TCB for isolation between users, but not part of the TCB for 
isolation between platform components or between applications. Conversely, a 
per-user service such as dconf might be part of the TCB for isolation between 
applications, but not part of the TCB for isolation between users. The Linux kernel 
is one example of a component that is part of the TCB for both layers.



3.5     SECURITY BETWEEN THE DEVICE AND THE NETWORK  

Apertis devices may be connected to the Internet, and should protect 
confidentiality and integrity of data stored on the Apertis device. The threat model
here is that an attacker controls the network between the Apertis device and any 
Internet service of interest, and may eavesdrop on network traffic (passive attack)
and/or substitute spoofed network traffic (active attack); we assume that the 
attacker does not initially control platform or application code running on the 
Apertis device. Our requirement is that normal operation of the Apertis device 
does not result in the attacker gaining the ability to read or change data on that 
device.

3.6     PHYSICAL SECURITY  

An attack that could be considered is one where the attacker gains physical 
access to the Apertis system, for example by stealing the car in which it is 
installed. It is obviously impossible to guarantee availability in this particular 
threat model (the attacker could steal or destroy the Apertis system), but it is 
possible to provide confidentiality, via encryption “at rest”.

A variation on this attack is to assume that the attacker has physical access to the
system and then returns it to the user, perhaps repeatedly. This raises the 
question of whether integrity is provided (whether the user can be sure that they 
are not subsequently entering confidential data into an operating system that has 
been modified by the attacker).

This type of physical security can come with a significant performance and 
complexity overhead; as a trade-off, it could be declared to be out-of-scope.



4 SOLUTIONS ADOPTED BY POPULAR PLATFORMS
As background for the discussions of this document, the following sections provide
an overview of the approaches other mobile platforms have chosen for security, 
including  an explanation of the trade-offs or assumptions where necessary.

4.1     ANDROID  

Android uses the Linux kernel, and as such relies on it being secure when it comes
to the most basic security features of modern operating systems, such as process 
isolation and an access permissions model. On top of that, Android has a Java-
based virtual machine environment which runs regular applications and provides 
them with APIs that have been designed specifically for Android. Regular 
applications can execute arbitrary native code within their application sandbox, 
for example by using the NDK interfaces5. However, some system functionality is 
not directly available within the application sandbox, but can be accessed by 
communicating with more-privileged components, typically using Android's Java 
APIs.

Early versions of Android worked under the assumption that the system will be 
used by a single user, and no attempt was made towards supporting any kind of 
multi-user use case. Based on this assumption, Android re-purposed the concept 
of UNIX user ID (uid), making each application run as a different user ID. This 
allows for very tight control over what files each application is able to access by 
simply using user-based permissions; this provides isolation between applications 
(section 3.1). In later Android versions, which do have multi-user support, user IDs
are used to provide two separate security boundaries – isolating applications from 
each other, and isolating users from each other (section 3.3) – with one user ID 
per (user, app) pair. This is discussed in more detail in the Multiuser design 
document.

The system's main file system is mounted read-only to protect against 
unauthorized tampering with system files (integrity for platform data, section 3.4);
however, this does not protect integrity against an attacker with physical access 
(section 3.6). Encryption of the user data partition through the standard dm-crypt 
kernel facility (confidentiality despite physical access, 3.6) is supported if the user
configures a password for their device. Users using gesture-based or other unlock 
mechanisms are unable to use this feature.

The root user on Android is all-powerful, and can do anything to the system. 
Android makes no attempt to limit the power of processes running as UID 0 (the 
root user ID); in other words, they are part of the TCB. All security of system 
services, and the core system and applications rely on the separation of users 
already discussed and in assuming nothing other than the essential (the kernel 
itself and a very small number of system services) runs with root privileges.

Older versions of Android did not use Mandatory Access Control, discussed in this 
document's chapter 5. More recent versions use SELinux to augment the uid-

5 https://developer.android.com/training/articles/security-tips.html#Dalvik notes that “On 
Android, the Dalvik VM is not a security boundary”.



based sandbox6. The idea of restricting the services an application can use to 
those specified in the application's manifest also exists in Android. Before 
installation, Android shows a list of system services the application intends to 
access and installation only initiates if the user agrees. This differs slightly from 
the Applications design in Apertis7, in which some permissions are subject to 
prompting similar to Android's, while other permissions are checked by the app 
store curator and unconditionally granted on installation.

Android provides APIs to verify a process has a given permission, but no central 
control is built into the API layer or the IPC mechanism as planned for Apertis – 
checking whether a caller has the required permissions to make that call is left to 
the service or application that provides the IPC interface or API8, similar to how 
most GNOME services work by using PolicyKit9 (see section 6 for more on this 
topic).

No effort is made specifically towards thwarting applications misbehaving and 
causing a Denial of Service on system services or the IPC mechanism. Android 
uses two very simple strategies to forcibly stop an application: 1) it kills 
applications when the device is out of memory; 2) it notifies the user of 
unresponsive applications and allows them to force the application to close10, 
similar to how GNOME does it.

An application is deemed to not be responding after about 5 seconds of not being 
able to handle user input. This feature is implemented by the Android window 
manager service, which is responsible for dispatching events read from the kernel 
input events interface (the files under /dev/input) to the application, in 
cooperation with the activity manager service, which shows the application not 
responding dialog and kills the application if the user decides to close it. After 
dispatching an event, the window manager service waits for an acknowledgement
from the application with a timeout; if the timeout is hit, then the application is 
considered not responding.

4.2     BADA  

Bada is not an Open Source platform, so closer inspection of the inner workings is 
not feasible. However, the documentation indicates that Bada also kills 
applications when under memory pressure.

It also uses a simple API privilege level framework as the base of its security and 
reliability architecture. Applications running with the Normal API privilege level 
need to specify which API privilege groups11 it needs to be able to access in their 
manifest file.

6 Security-Enhanced Linux in Android, https://source.android.com/devices/tech/security/selinux/
7 See the Applications design document, available from https://wiki.apertis.org/ConceptDesigns. 

This document was written with reference to version 0.5.4 of the Applications design document.
8 See, for instance, how the A2DP service verifies the caller has the required permission: 

https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/Blu
etoothA2dpService.java#L257

9 http://  wiki  .gnome.org/PolicyKit
10http://developer.android.com/guide/practices/design/responsiveness.html
11http://developer.bada.com/help/index.jsp?

topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm

http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm
http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm
http://developer.android.com/guide/practices/design/responsiveness.html
http://live.gnome.org/PolicyKit
http://live.gnome.org/PolicyKit
http://live.gnome.org/PolicyKit
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://wiki.apertis.org/ConceptDesigns
https://source.android.com/devices/tech/security/selinux/


Some APIs are restricted under the System API level and can be used only by 
Samsung or its authorized partners. It's not possible to say whether those 
restrictions are applied in a general way or by having the modules that provide 
the APIs perform validation checks, but the latter seems more likely given these 
are C++ APIs that do not go through any kind of central service.

4.3     IOS      12  

iOS is, like Bada, a closed platform, so details are sometimes difficult to obtain, 
but Apple does use some Open Source components (at the lower levels, in 
particular). iOS has an application sandbox13 that is very similar in functionality to 
AppArmor, discussed bellow. The technology is based on Mandatory Access 
Control provided by the TrustedBSD project14 and has been marketed under the 
Seatbelt name.

Like AppArmor, it uses configuration files that specify profiles, using path-based 
rules for file system access control. Also like AppArmor, other functionality such as
network access can be controlled. The actual confinement is applied when the 
application uses system calls to request that the kernel carries out an action on 
the application's behalf (in other words, when  the privilege boundary between 
user-space and the kernel is crossed).

Seatbelt is considered to be the single canonical solution to sandboxing 
applications on iOS; this is in contrast with Linux, in which AppArmor is one option
among many (system calls can be mediated by seccomp, the Secure Computing 
API15 described in section 17 of this document, in addition to up to one MAC layer 
such as AppArmor, SELinux or Smack).

None of this complexity is exposed to apps developed for iOS, though; they are 
merely implementation details.

Apparently, there are no central controls whatsoever protecting the system from 
applications that hang or try to DoS system services. The only real limitation 
imposed is the available system memory.

Applications are free to use any APIs available, there are no explicit declarative 
permissions system like the one used in Android. However, some functionality are 
always  mediated by the system, including through system-controlled UI.

For instance, an application can query the GPS for location; when that happens, 
the system will take over and present the user with a request for permission. If 
the user accepts the request will be successful and the application will be white-
listed for future queries. The same goes for interacting with the camera: the 
application can request a picture be taken, but the UI that is presented for taking 
the picture is controlled by the system as is actual interaction with the camera.

This is analogous to the way in which Linux services can use PolicyKit to mediate 
privileged actions (see section 6), although on iOS the authorization step is 

12See http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf for a high level 
overview.

13http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
14http://www.trustedbsd.org/mac.html
15http://lwn.net/Articles/475043/

http://lwn.net/Articles/475043/
http://www.trustedbsd.org/mac.html
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf


specifically considered to be an implementation detail of the API used, whereas 
some Linux services do make the calling application aware of whether there was 
an interactive authorization step.



5 MANDATORY ACCESS CONTROL
The goal of the Linux Discretionary Access Control (DAC) is a separation of 
multiple users and their data (sections 3.3, 3.4). The policies are based on the 
identity of a subject or their groups. Since in Apertis applications from the same 
user should not trust each other (section 3.1), the utilization of a Mandatory 
Access Control (MAC) system is recommended. MAC is implemented in Linux by 
one of the available Linux Security Modules (LSM).

5.1     LINUX SECURITY MODULES (LSM)  

Due to the different nature and objectives of various security models there is no 
real consensus about which security model is the best, thus support for loading 
different security models and solutions became available in Linux in 2001. This 
mechanism is called Linux Security Modules (LSM).

Although it is in theory possible to provide generic support for any LSM, in 
practice most distributions pick one and stick to it, since both policies and threat 
models are very specific to any particular LSM module.

The first implementation on top of LSM was SELinux developed by the US National
Security Agency (NSA). In 2009 the TOMOYO Linux module was also included in 
the kernel followed by AppArmor in the same year. The sub-sections below gives a
short introduction on the security models that are officially supported by the Linux
Kernel.

5.1.1 SELINUX

SELinux16 is one of the most well-known LSMs. It is supported by default in Red 
Hat Enterprise Linux and Fedora. It is infamous for how difficult it is to maintain 
the security policies; however, being the most flexible and not having any 
limitation regarding what it can label, it is the reference in terms of features. For 
every user or process,  SELinux assigns a context which consists of a role, user 
name and domain/type. The circumstances under which the user is allowed to 
enter into a certain domain must be configured into the policies. 

SELinux works by applying rules defined by a policy when kernel-mediated actions
are taken. Any file-like object in the system, including files, directories, and 
network sockets can be labeled. Those labels are set on file system objects using 
extended file system attributes. That can be problematic if the file system that is 
being used in a given product or situation lacks support for extended attributes. 
While support has been built for storing labels in frequently used networking file 
systems like NFS, usage in newer file systems may be challenging. Note that 
BTRFS does support extended attributes.

Users and processes also have labels assigned to them. Labels can be of a more 
general kind like, for instance, the sysadm_t label, which is used to determine that
a given resource should be accessible to system administrators, or of a more 
specific kind. 

Locking down a specific application, for instance, may involve creating new labels 

16  http://selinuxproject.org/page/Main_Page

http://selinuxproject.org/page/Main_Page


specifically for its own usage. A label “browser_cache_t” may be created, for 
instance, to protect the browser cache storage. Only applications and users which 
have their label assigned to them will be able to access and manage those files. 
The policy will specify that any files created by the browser on that specific 
directory are assigned that label automatically.

Labels are automatically applied to any resources created by a process, based on 
the labels the process itself has, including sockets, files, devices represented as 
files and so on. SELinux, as other MAC systems, is not designed to impose 
performance-related limitations, such as specifying how much CPU time a process 
may consume, or how many times a process duplicates itself, but supports pretty 
much everything in the area it was designed to target.

The SELinux support built into D-Bus allows enhancement of the existing D-Bus 
security rules by associating names, methods and signals with SELinux labels, 
thus bringing similar policy-making capabilities to D-Bus.

5.1.2 TOMOYO LINUX

TOMOYO Linux17 focuses on the behavior of a system where every process is 
created with a certain purpose and allows each process to declare behaviors and 
resources needed to achieve their purposes. TOMOYO Linux is not officially 
supported by any popular Linux distribution. 

5.1.3 SMACK

Simplicity is the primary design goal of SMACK18. It was used by MeeGo before 
that project was cancelled; Tizen19 appears to be the only general-purpose Linux 
distribution using SMACK as of 2015.

SMACK works by assigning labels to the same system objects and to processes 
SELinux does; similar capabilities were proposed by Intel for D-Bus integration, but
their originators did not follow up on reviews20, and the changes were not merged.
SMACK also relies on extended file system attributes for the labels, which means 
it suffers from the same shortcomings that come from that as SELinux. 

There are a few special predefined labels, but the administrator can create and 
assign as many different labels as desired. The rules regarding what a process 
with a given label is able to perform on an object with another given label are 
specified in the system-wide policy file /etc/smack/accesses, or can be set in run-
time using the smackfs virtual file system. 

MeeGo used SMACK by assigning a separate label to each service in the system, 
such as “Cellular” and “Location”. Every application would get their own labels 
and on installation the packaging system would read a manifest that listed the 
systems the application would require, and SMACK rules would then be created to 
allow those accesses. 

17http://tomoyo.sourceforge.jp/
18http://schaufler-ca.com/
19https://developer.tizen.org/sdk.html
20https://bugs.freedesktop.org/show_bug.cgi?id=47581

https://bugs.freedesktop.org/show_bug.cgi?id=47581
https://developer.tizen.org/sdk.html
http://schaufler-ca.com/
http://tomoyo.sourceforge.jp/


5.1.4 APPARMOR

Of all LSM modules that were reviewed, Application Armor (AppArmor)21 can be 
seen as the most focused on application containment. 

AppArmor allows the system administrator to associate an executable with a 
given profile in order to limit access to resources. These resource limitations can 
be applied to network and file system access and other system objects. Unlike 
SMACK and SELinux, AppArmor does not use extended file system attributes for 
storing labels, making it file system agnostic. 

Also in contrast with SELinux and SMACK, AppArmor does not have a system-wide 
policy, but application profiles, associated with the application binaries. This 
makes it possible to disable enforcement for a single application, for instance. In 
the event of shipping a policy with an error that leads to users not being able to 
use an application it is possible to quickly restore functionality for that application 
without disabling the security for the system as a whole, while the incorrect profile
is fixed.

Since AppArmor uses the path of the binary for profile selection, changing the 
path through manipulation of the file system name space (i.e. through links or 
mount points) is a potential way of working-around the limits that are put in place;
while this is cited as a weakness, in practice it is not an issue, since restrictions 
exist to block anyone trying to do this. Creation of symbolic links is only allowed if 
the process doing so is allowed to access the original file, and links are followed to
enforce any policy assigned to the binary they link to. Confined processes are also
not allowed to mount file systems unless they are given explicit permission.

Here's an example of how restricting ping's ability to create raw sockets cannot be
worked around through linking – lines beginning with $ represent commands 
executed by a normal user, and those starting with # have been executed by the 
root user:

$ ping debian.org 
ping: icmp open socket: Operation not permitted 
$ ln -s /bin/ping 
$ ./ping debian.org 
ping: icmp open socket: Operation not permitted 
$ ln /bin/ping ping2 
ln: failed to create hard link `ping2' => `/bin/ping': Operation not 
permitted 
# ping debian.org 
ping: icmp open socket: Operation not permitted
# ln -s /bin/ping /bin/ping2 
# ping2 debian.org 
ping: icmp open socket: Operation not permitted 

Listing 1: AppArmor restriction applying to file system links

Copying the file would make it not trigger the containment. However, even if the 
user was able to symlink the binary or use mount points to work-around the path-

21http://wiki.apparmor.net/index.php/Main_Page

http://wiki.apparmor.net/index.php/Main_Page


based restrictions that should not mean privilege escalation, given the white-list 
approach that is being adopted. That approach means that any binary escaping 
its containment profile would in actuality be dropping privileges, not escalating 
them, since the restrictions imposed on binaries that do not have their own 
profilecan be quite extensive.

Note, too, that Collabora is proposing mounting partitions that should only contain
data with the option that disallows execution of code contained in them, so even if
the user manages to escape the strict containment of the user session and copied
a binary to one of the directories they have write access to they would not be able
to run it. Refer to the System updates & rollback and Application designs for more 
details on file system and partition configuration.

Integration with D-Bus was developed by Canonical and shipped in Ubuntu for 
several years, before being merged upstream in dbus-daemon 1.9 and AppArmor 
2.9. The implementation includes patches to AppArmor's user-space tools, to 
make the new D-Bus rules known to the profile parser, and to dbus-daemon, so 
that it will check with AppArmor before allowing a request.

AppArmor will be used by shipping profiles for all components of the platform, and
by requiring that third-party applications shipped with their own profiles that 
specified exactly what requests the application should be allowed. 

Creating a new profile for AppArmor is a reasonably simple process: a new profile 
is generated automatically running the program under AppArmor's profile 
generator, aa-genprof22, and exercising its features so that the profile generator 
can capture all of the accesses the application is expected to make. After the 
initial profile has been generated it must be reviewed and fine-tuned by manual 
editing to make sure the permissions that are granted are not beyond what is 
expected.

In AppArmor there is no default profile applied to all processes, but a process 
always inherits limitations imposed to its parent. Setting up a proper profile for 
components such as the session manager is a practical and effective way of 
implementing this requirement.

5.2     COMPARISON  

Since all those Linux Security Modules rely on the same kernel API and have the 
same overall goals, the features and resources they are able to protect 
frameworks are very similar, thus not much time will be spent covering those. The
policy format and how control over the system and its components is exerted 
varies from framework to framework, though, which leads to different limitations. 
The table below has a summary of features, simplicity and limitations:

22http://wiki.apparmor.net/index.php/Profiling_with_tools

http://wiki.apparmor.net/index.php/Profiling_with_tools


SELinux AppArmor SMACK

Maintainability Complex Simple Simple
Profile creation Manual/Tools Manual/Tools Manual

D-Bus integration Yes Yes
Not proposed 
upstream

File system agnostic No Yes No
Enforcement scope System-wide Per application System-wide

Table 1: Comparison of LSM features

Historically LSM modules have focused on kernel-mediated accesses, such as 
access to file system objects and network resources. Modern system, though, 
have several important features being managed by user-space daemons. D-Bus is 
one such daemon and is specially important since it is the IPC mechanism used by
those daemons and applications for communication. There is clear benefit in 
allowing D-Bus to cooperate with the LSM to restrict what applications can talk to 
which services and how.

In that regard SELinux and AppArmor are in advantage since D-Bus is able to let 
these frameworks decide whether a given communication should be allowed or 
not, and whether a given process is allowed to acquire a particular name on the 
bus. Support for SMACK mediation was worked on by Intel for use in Tizen, but has
not been proposed for upstream inclusion in D-Bus, and is believed to add 
considerable complexity to dbus-daemon. There is no work in progress to add 
TOMOYO support.

Like D-Bus' built-in support for applying “policy” to message delivery, AppArmor 
mediation of D-Bus messages has separate checks for whether the sender may 
send a message to the recipient, and whether the recipient may receive a 
message from the sender. Either or both of these can be used, and the message 
will only succeed if both sending and receiving were allowed. The sender's 
AppArmor profile determines whether it can send (usually conditional on the 
profile name of the recipient), and the recipient's AppArmor profile determines 
whether it can receive (either conditional on the profile name of the sender, or 
unconditionally), so some coordination between profiles is needed to express a 
particular high-level security policy.

The main difference between the SELinux and SMACK label-based mediation in 
terms of features is how granular you can get. With the D-Bus additions to the 
AppArmor profile language23, for instance, in addition to specifying which services 
can be called upon by the constrained process it is also possible to specify which 
interfaces and paths are allowed or denied. This is unlike SELinux mediation, 
which only checks whether a given client can talk to a given service24. One caveat
regarding fine-grained (interface- and path-based) D-Bus access control is that it 
is often not directly useful, since the interface and path is not necessarily 
sufficient to determine whether an action should be allowed or denied (for 
example, section 6.1 describes why this is the case for the udisks service). As a 

23http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference#DBUS_rules
24http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg

http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference#DBUS_rules


result of considerations like this, the developers of kdbus25 oppose the addition of 
fine-grained access control within kdbus, and have indicated that kdbus' access-
control will never go beyond allowing or rejecting a client communicating with a 
service.

Software that is being used by large distributions is often more tested and tested 
in more diverse scenarios. For this reason Collabora believes that being used by 
one of the main distributions is a very important feature to look for in a LSM. 

Flexibility is also good to have, since more complex requirements can be modeled 
more precisely. However, there is a trade-off between complexity and flexibility 
that should be taken into consideration. 

The recommendation on the selection of the framework is a combination of the 
adoption of the framework by existing distributions, features, maintainability, cost
of deployment and experience of the developers involved. Table 2 contains a 
comparison of the adoption of the existing security models. Only major 
distributions that ship and enable the module by default are listed.

Distributions
Merged to 
mainline Maintainer

SELinux
Fedora, Red Hat 
Enterprise

08 Aug 2003

NSA, Network 
Associates, Secure 
Computing Corp., 
Trusted Computer 
Solutions, Tresys

AppArmor
SUSE, OpenSUSE, 
Ubuntu

20 Oct 201026 SUSE, Canonical

SMACK Tizen 11 Aug 2007 Intel, Samsung27

TOMOYO - 10 Jun 2009 NTT Data Corp.

Table 2: Comparison of LSM adoption and maturity

5.3     PERFORMANCE IMPACT  

The performance impact of MAC solutions depends heavily on the workload of the 
application, so it's hard to rely upon a single metric. It seems major adopters of 
these technologies are not too concerned about their real-world impact, even 
though they may be expressive in benchmarks, since there are no recent 
measurements of performance impact for the major MAC solutions.

That said, early tests indicate that SELinux has a performance impact floating 
around 7% to 10%28, with tasks that are more CPU intensive having less impact, 
since they are not making many system calls that are checked. SELinux performs 
checks on every operation that touches a labeled resource, so when reading or 

25kdbus is a kernel module that has been proposed to take over the role of the user-space dbus-
daemon in D-Bus on Linux systems. https://github.com/gregkh/kdbus

26That date refers to the date AppArmor was integrated in mainline Linux; AppArmor exists since 
the early 2000s, having been used by Immunix, its original developer, SUSE from 2005 
onwards, and was adopted by Ubuntu in  2007.

27http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=history;f=security/smack;hb=HEAD
28http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html

http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=history;f=security/smack;hb=HEAD
https://github.com/gregkh/kdbus


writing a file all read/write operations would cause a check. That means making 
larger operations instead of several smaller ones would also make the overhead 
go down.

AppArmor does fewer checks than SELinux, in general, since only operations that 
open, map or execute a file are checked: the individual read/write operations that 
follow are not checked independently. Novell's documentation and FAQs state a 
0.2% overhead is expected on best-case scenarios – writing a big file, for instance,
with a 2% overhead in worst-case scenarios (an application touching lots of files 
once). Collabora's own testing on a 2012 x86-64 system puts the worst case 
scenario leaning towards the 5% range. The test measured reading 3000 small 
files with a hot disk cache, and ranged from ~89ms to ~94ms average duration.

SMACK's performance characteristics should be similar to that of SELinux, given 
their similar approach to the problem. SMACK has been tested for a TV embedded 
scenario29 which has shown performance degradation from 0% all the way to 30% 
on a worst-case scenario of deleting a 0-length file. Degradation varied greatly 
depending on the benchmark used.

The only conclusion Collabora believes can be drawn from these numbers is that 
an approach which checks less often (as is the case for AppArmor) can be 
expected to have less impact on performance, in general. That said, these 
numbers should be taken with a grain of salt, since they haven't been measured 
in the exact same hardware and with the exact same methodology. They may also
suffer from bias caused by benchmark tests which may not represent real-world 
usage scenarios.

No numbers exist measuring the impact on performance of the existing D-Bus 
SELinux and AppArmor mediation, nor with the in-development SMACK mediation.
The overhead caused to each D-Bus call should be similar to that of opening a file,
since the same procedure is involved: a check needs to be done each time a 
message is received from a client that is contained. It should be noted that D-Bus 
is not designed to be used for high-frequency communication due to its per-
message overhead, so the additional overhead for AppArmor should not be 
problematic unless D-Bus is already being misused.

Where higher-frequency communication is required, D-Bus' file descriptor passing 
feature can be used to negotiate a private channel (a pipe or socket) between two
processes. This negotiation can be as simple as a single D-Bus method call, and 
only incurs the cost of AppArmor checks once (when it is first set up). Subsequent 
messages through the private channel bypass D-Bus and are not checked 
individually by AppArmor, avoiding any per-message overhead in this case.

A more realistic and reliable assessment of the overhead imposed on a real-world 
system would only be feasible on the target hardware, with actual applications, 
where variables like storage device and file system would also be better 
controlled.

29http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf

http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf


5.4     CONCLUSION  

Collabora recommends the adoption of a MAC solution, specifically AppArmor. It 
solves the problem of restricting applications to the privileges they require to 
work, and is an effective solution to the problem of protecting applications from 
other applications running for the same user, which a DAC model is not able to 
provide.

SMACK and TOMOYO have essentially no adoption and support when compared to 
solutions like SELinux and AppArmor, without providing any clear advantages. 
MeeGo would have been a good testing ground for SMACK, but the fact that it was
never really deployed in enforcing mode means that the potential was never 
realized. 

SELinux offers the most flexible configuration of security policies, but it introduces
a lot of complexity on the setup and maintenance of the policies, not only for 
distribution maintainers but also for application developers and packagers, which 
impacts on the costs of the solution It is quite common to see Fedora users 
running into problems caused by SELinux configuration issues. 

AppArmor stands out as a good middle-ground between flexibility and 
maintainability while at the same time having significant adoption: by the biggest 
end-user desktop distribution (Ubuntu) and by one of the two biggest enterprise 
distributors (SUSE). The fact that it is the security solution already supported and 
included in the Ubuntu distribution, which is the base of the Apertis platform, 
minimizes the initial effort to create a secure baseline and reduces the effort 
needed to maintain it. Since Ubuntu ships with AppArmor, some of the services 
and applications will already be covered by the profiles shipped with Ubuntu. 
Creation of additional profiles is made easy by the profile generator tool that 
comes with AppArmor. it records everything the application needs to do during 
normal operation, and allows for further refining after the recording session is 
done. 

Collabora will integrate and validate the existing Ubuntu profiles that are relevant 
to the Apertis platform as well as modify or write any additional profiles required 
by the base platform. Collabora will also assist in the creation of profiles for higher
level applications that ship with the final product and on the strategy for profile 
management for third party applications.

5.4.1 APPARMOR POLICY AND MANAGEMENT EXAMPLES 

Looking at a few examples might help better visualize how AppArmor works, and 
what creating new policies entices. Let's look at a simple policy file: 

# cat /etc/apparmor.d/bin.ping 
[…] 
/bin/ping { 
  #include <abstractions/base> 
  #include <abstractions/consoles> 
  #include <abstractions/nameservice> 



  capability net_raw, 
  capability setuid, 
  network inet raw, 

  /bin/ping mixr, 
  /etc/modules.conf r, 

  # Site-specific additions and overrides. See local/README for details. 
  #include <local/bin.ping> 
} 

Listing 1: AppArmor policy shipped for ping in Ubuntu

This is the policy for the ping command. The binary is specified, then a few 
includes that have common rules for the kind of binary ping (console), and 
services it consumes (nameservice). Then we have two rules specifying 
capabilities that the program is allowed to use, and we state the fact that it is 
allowed to do perform raw network operations. Then it's specified that the process
should be able to memory map (m) /bin/ping, inherit confinement from the parent 
(i), execute the binary /bin/ping (x) and read it (r). It's also specified that ping 
should be able to read /etc/modules.conf. 

If an attack was able to execute arbitrary code by hijacking the ping process, then
that is all it would be able to do. No reading of /etc/password would be allowed, for
instance. If ping was a very core feature of the device and starts failing because of
a bad policy, it is possible to disable security enforcement just for ping, leaving 
the rest of the system secured (something that would not be easily done with 
SMACK or SELinux), by running aa-disable with ping's path as the parameter, or 
by installing a symbolic link in /etc/apparmor.d/disable: 

# aa-disable /bin/ping 
Disabling /bin/ping. 
# ls -l /etc/apparmor.d/disable/ 
total 0 
lrwxrwxrwx 1 root root 24 Feb 20 19:38 bin.ping -> 
/etc/apparmor.d/bin.ping

Listing 2: A symbolic link to disable the ping AppArmor policy

Note that aa-disable is only a convenience tool to unload a profile and link it to the
/etc/apparmor.d/disable directory. Note that the convenience script is not 
currently shipped in the image intended for the target hardware. It is available in 
the repository though, and is available in the development and SDK images since 
it makes it more convenient to test and debug issues.

Note, also, that writing to the /etc/apparmor.d/disable directory is required for 
creating the symlink there, and the UNIX DAC permissions system already 
protects that directory for writing - only root is able to write to this directory. As 
discussed in section 5.4.4, if an attacker becomes root the system is already 
compromised.



Also, as discussed in the System update & rollback, the system partition will be 
mounted read-only, so that is an additional protection layer already. And in 
addition to that, the white-list approach discussed in section 5.4.5 will already 
deny writing to anywhere in the file system, so anything running under the 
application manager will have an additional layer of security imposed on them.

For these reasons, Collabora doesn't see any reason to add additional security 
such as AppArmor profiles specifically for protecting the system against 
unauthorized disabling of profiles.

5.4.2 PROFILES FOR LIBRARIES

AppArmor profiles are always attached to a binary. That means there is no way to 
attach a profile to every program that uses a given library. However, developers 
can write files called abstractions with rules that can be included through the 
#include directive, similar to how libraries work for programming. Using this 
feature Collabora has written rules for the WebKit Clutter library, for instance, that
can be included by the browser application as well as by any application that uses
the library.

There is also concern with protecting internal, proprietary libraries, so that they 
cannot be used by applications. In the profiles and abstractions shipped with 
Apertis right now, all applications are allowed to use all libraries that are installed 
in the public library paths (such as /usr/lib).

The rationale for this is libraries are only pieces of code that could be included by 
the applications themselves, and it would be very time-consuming and error prone
having to specify each and every library and module the application may need to 
use directly or that would be used indirectly by a library used by the application. 

Collabora recommends that proprietary libraries that are used only by one or a 
few services should be installed in a private location, such as the application's 
directory. That would put those libraries outside of the paths covered by the 
existing rules, and they would this be out of reach for any other application 
already, given the white-list approach to session lockdown, as discussed in section
5.4.5.

If that is not possible, because the library hardcodes paths or some other issue, 
an explicit deny rule could be added to the chaiwala-base30 abstraction that 
implements the general rules that apply to most applications, including the one 
that allows access to all libraries. Collabora can help deciding what to do with 
specific libraries through support tickets opened in the bug tracking system.

5.4.3 APPLICATION INSTALLATION AND UPGRADES

For installations and upgrades to be performed, no changes to the running 
system's security are necessary, since the processes that manage upgrade, 
including the creation of the required snapshots will have enough power given to 
them

An application's profile is read at startup time. That means an application that has

30Chaiwala was a development codename for parts of the Apertis system. The name is retained 
here for compatibility reasons.



been upgraded will only be contained with the new rules after it has been 
restarted.  The D­Bus integration works by querying the kernel interface for the PID
it is communicating with, not its own, so D­Bus itself does not need to be restarted 
when new profiles are installed.

When a .deb package is installed its AppArmor profile will be installed to the 
system AppArmor profile location (/etc/apparmor.d/), but in the new snapshot 
created for the upgrade rather than on the running system.

The new version of the upgraded package and its new profile will only take effect 
after the system has been rebooted. For details about how .deb packages will be 
handled when the system is upgraded please see the System Updates and 
Rollback document.

For more details on how applications from the store will be handled, the 
Applications document produced by Collabora goes into details about how the 
permissions specified in the manifest will be transformed into AppArmor profiles 
and on how they will be installed and loaded.

5.4.4 A NOTE ABOUT ROOT

As has been demonstrated in listing 1, AppArmor can restrict even the powers of 
the root user. Most platforms do not try to limit that power in any way, since if an 
attacker has breached the system to get root privileges it's likely that all bets are 
already off. That said, it should be possible to limit the root user's ability to modify
the AppArmor profiles, leaving that task solely for the package manager (see the 
Applications design for details).

5.4.5 IMPLEMENTING A WHITE-LIST APPROACH

Collabora recommends the use of a white-list approach in which the app-launcher 
will be confined to a policy that denies almost everything, and specific 
permissions will be granted by the application profiles. This means all applications
will only be able to access what is expressively allowed by their specific policies, 
providing Apertis with a very tight least-privilege implementation.

A simple example of how that can be achieve using AppArmor is provided in the 
following examples. The examples will emulate the proposed solution by locking 
down a shell, which represents the Apertis application launcher, and granting 
specific privileges to a couple applications so that they are able to access the files
they require.

Listing 4 shows the profiles for the shell, essentially denying it access to 
everything by not allowing access to any files. It gives the shell permission to run 
both ls and cat. Note that flags rix are used for this, meaning the shell can read 
the binaries (r), and execute them (x); the i preceding the x tells AppArmor that 
these binaries should inherit the shell's confinement rules, even if they have rules 
of their own.

Then permission is given for the shell to run the dconf command. dconf is 
GNOME's settings storage. Notice that we have p as the prefix for x this time. This
means we want this application to use its own rules; if no rules had been 
specified, then AppArmor would have fallen back to using the shell's confinement 



rules.

> cat /etc/apparmor.d/bin.zsh4 
# Last Modified: Fri May 11 11:43:44 2012 
#include <tunables/global> 

/bin/zsh4 { 
  #include <abstractions/base> 
  #include <abstractions/consoles> 
  #include <abstractions/nameservice> 

  /bin/ls rix, 
  /bin/cat rix, 
  /usr/bin/dconf rpx, 

  /bin/zsh4 mr, 
  /usr/lib/zsh/*/zsh/* mr, 
} 
> cat /etc/apparmor.d/usr.bin.dconf 
# Last Modified: Fri May 11 11:59:09 2012 
#include <tunables/global> 

/usr/bin/dconf { 
  #include <abstractions/base> 
  #include <abstractions/nameservice> 

  @{HOME}/.cache/dconf/user rw, 
  @{HOME}/.config/dconf/user r, 

  /usr/bin/dconf mr, 
} 

Listing 4: Sample profiles for implementing white-listing

The profile for dconf allows reading (and only reading) the user configuration for 
dconf itself, and allows reading and writing to the cache. By using these rules we 
have both guaranteed that no application executed from this shell will be able to 
look at or interfere with dconf's files, and that dconf itself is able to function when 
used. Here's the result:

% cat .config/dconf/user 
cat: .config/dconf/user: Permission denied 
% dconf read /apps/empathy/ui/show-offline 
true 
% 

Listing 5: Effects of white-list approach profiles

As shown by this example, the application launcher itself and any applications 
which do not posses profiles can be restricted to the bare minimum permissions, 
and applications can be given the more specific privileges they require to do their 



job, using the p prefix to let AppArmor know that's what is desired.



6 POLKIT (POLICYKIT)
polkit (formerly PolicyKit) is a service used by various upstream components in 
Apertis, as a way to centralize security policy for actions delegated by one process
to another. The central problems addressed by polkit are that the desired security 
policies for various privileged actions are system-dependent and non-trivial to 
evaluate, and that generic components such as the kernel's DAC and MAC 
subsystems do not have enough context to understand whether a privileged 
action is acceptable.

6.1     MOTIVATION FOR POLKIT  

Broadly, there are two ways a process can carry out a desired action: it can do it 
directly, or it can use inter-process communication to ask a service to do that 
operation on its behalf. If the action is done directly, the components that say 
whether it can succeed are the Linux kernel's normal discretionary access control 
(DAC) permissions checks, and if configured, a mandatory access control module 
(MAC, section 5).

However, the kernel's relatively coarse-grained checks are not sufficient to 
express the desired policies for consumer-focused systems. A frequent example is 
mounting file systems on removable devices: if a user plugs in a USB stick with a 
FAT filesystem, it is reasonable to expect the user interface layer to either mount 
it automatically, or let the user choose to mount it. Similarly, to avoid data loss, 
the user should be able to unmount the removable device when they have 
finished with it.

Applying the desired policy using the kernel's permission checks is not possible, 
because mounting and unmounting a USB stick is fundamentally the same system
call as mounting and unmounting any other file system, which is not desired: if 
ordinary users can make arbitrary mount system calls, they can mount a file 
system that contains setuid executables and achieve privilege escalation. As a 
result, the kernel disallows direct mount and unmount actions by unprivileged 
processes; instead, user processes may request that a privileged system process 
carries out the desired action. In the case of device mounting, Apertis uses the 
privileged udisks2 service to mount and unmount devices.

In environments that use a MAC framework like AppArmor, actions that would 
normally be allowed can also become privileged: for instance, in a framework for 
sandboxed applications, most apps should not be allowed to record audio. The 
resulting AppArmor adjustments prevent carrying out these actions directly. The 
result is that, again, the only way to achieve them is that a service with a suitable 
privilege carries out the action (perhaps with a mandatory user interface prompt 
first, as in certain iOS features).

These privileged requests are commonly sent via the D-Bus interprocess 
communication (IPC) system; indeed, this is one of the purposes for which D-Bus 
was designed. D-Bus has facilities for allowing or forbidding messages between 
particular processes in a somewhat fine-grained way, either directly or mediated 
by MAC frameworks. However, this has the same issue as the kernel's checks for 
direct mount operations: the generic D-Bus IPC framework does not understand 



the context of the messages. For example, it can allow or forbid messages that 
ask to mount a device, but cannot discriminate based on whether the device in 
question is a removable device or a system partition, because it does not have 
that domain-specific information.

This means that the security decision – having received this request, should the 
service obey it? – must be at least partly made by the service itself (for example 
udisks2), which does have the necessary domain-specific context to do so.

The kdbus subsystem proposed for inclusion in the Linux kernel, which aims to 
supersede the user-space implementation of D-Bus, has an additional restriction: 
to minimize the amount of code in the TCB, it only parses the parts of a message 
that are necessary for normal message-routing. As a result, it does not 
discriminate between messages by their interface, member name or object-path, 
only by attributes of the source and destination processes. This is another reason 
why permissions checking for services such as disk-mounting must be done at 
least partly by the domain-specific service such as udisks2.

The desired security policies for certain actions are also relatively complex. For 
example, udisks2 as deployed in a modern Linux desktop system such as Debian 
8 would normally allow mounting devices if and only if:

• the requesting user is root, or

• the requesting user is in group sudo, or

• all of

◦ the device is removable or external, and

◦ the mount point is in /media, and

◦ the mount options are reasonable, and

◦ the device's seat (in multi-seat computing) matches one of the seats at 
which the user is logged-in, and

◦ either

▪ the user is in group plugdev, or

▪ all of

• the user is logged-in locally, and

• the user is logged-in on the foreground virtual console

This is already complex, but it is merely a default, and is likely to be adjusted 
further for special purposes (such as a single-user development laptop, a locked-
down corporate desktop, or an embedded system like Apertis). It is not reasonable
to embed these rules, or a sufficiently powerful parser to read them from 
configuration, into every system service that must impose such a policy.

6.2     POLKIT'S SOLUTION  

polkit addresses this by dividing the authorization for actions into two phases.



In the first phase, the domain-specific service (such as udisks2 for disk-mounting) 
interprets the request and classifies it into one of several actions which 
encapsulate the type of request. The principle is that the action combines the 
verb and the object for the desired operation: if a security policy would commonly 
produce different results when performing the same verb on different objects, 
then they are represented by different actions. For example, udisks2 divides the 
high-level operation “mount a disk” into the actions 
org.freedesktop.udisks2.filesystem-mount, 
org.freedesktop.udisks2.filesystem-mount-system, 
org.freedesktop.udisks2.filesystem-mount-other-seat and 
org.freedesktop.udisks2.filesystem-fstab depending on attributes of the 
disk. It also gathers information about the process making the request, such as 
the user ID and process ID. polkit clients do not currently record the LSM context 
(AppArmor profile, etc.) used by MAC frameworks, but could be enhanced to do 
so.

In the second phase, the service sends a D-Bus request to polkit with the desired 
action, and the attributes of the process making the request. polkit processes this 
request according to its configuration, and returns whether the request should be 
obeyed.

In addition to “yes” or “no”, polkit security policies can request that a user, or a 
user with administrative (root-equivalent) privileges, authenticates themselves 
interactively; if this is done, polkit will not respond to the request until the user 
has responded to the polkit agent, either by authenticating or by cancelling the 
operation.

We recommend that this facility is not used with a password prompt in Apertis, 
since that user experience would be highly distracting. For operations that are 
deemed to be allowed or rejected by the platform designer, either the policy 
should return “yes” or “no” instead of requesting authorization, or the platform-
provided polkit agent should return that result in response to authorization 
requests without any visible prompting. However, a prompt for authorization, 
without requiring authentication, might be a desired UX in some cases.

6.3     RECOMMENDATION  

We recommend that Apertis should continue to provide polkit as a system service.
If this is not done, many system components will need to be modified to refrain 
from carrying out the polkit check.

If the desired security policy is merely that a subset of user-level components may
carry out privileged actions via a given system service, and that all of those user-
level components have equal access, we recommend that Apertis' polkit 
configuration should allow and forbid actions appropriately.

If it is required that certain user-level components can communicate with a given 
system service with different access levels, we recommend enhancing polkit so 
that it can query AppArmor, giving the action as a parameter, before carrying out 
its own checks; this parallels what dbus-daemon currently does for SELinux and 
AppArmor.



6.3.1 ALTERNATIVE DESIGN: RELY ENTIRELY ON APPARMOR CHECKS

The majority of services that communicate with polkit do so through the 
libpolkit-gobject library. This suggests an alternative design: the polkit service
and its D-Bus API could be removed entirely, and the AppArmor check described 
above could be carried out in-process by each service, by providing a “drop-in” 
compatible replacement for libpolkit-gobject that performed an AppArmor 
query itself instead of querying polkit.

We do not recommend this approach: it would be problematic for services such as 
systemd that do not use  libpolkit-gobject, it would remove the ability for the 
policy to be influenced by facts that are not known to AppArmor (such as whether 
a user is logged-in and active), and it would be a large point of incompatibility 
with upstream software.



7 RESOURCE USAGE CONTROL
Resource usage here refers to the limitation and prioritization of hardware 
resources usage. Common resources to limit usage of are CPU, memory, network, 
disk I/O and IPC. 

The proposed solution is Control Groups (cgroups)31, which is a Linux kernel 
feature to limit, account, isolate and prioritize resource usage of process groups. It
protects the platform from resource exhaustion and DoS attacks.  The groups of 
processes can be dynamically created and modified. The groups are divided by 
certain criteria and each group inherits limits from its parent group. 

The interface to configure a new group is via a pseudo file system that contains 
directories to label the groups and each directory can have sub-directories (sub-
groups). All those directories contain files that are used to set the parameters or 
provide information about the groups. 

By default, when the system is booted, the init system Collabora recommends for 
this project, systemd, will assign separate control groups to each of the system 
services. Collabora will further customize the cgroups of the base platform to 
clearly separate system services, built-in applications and third-party applications.
Support will be provided by Collabora for fine-tuning the cgroup profiles for the 
final product.

7.1     IMPOSING LIMITS ON I/O FOR BLOCK DEVICES  

The blkio subsystem is responsible for dealing with I/O operations concerning 
storage devices. It exports a number of controls that can be tuned by the cgroups
subsystem. Those controls fall into one of two possible strategies: setting 
proportional weights for different cgroups or absolute upper bounds.

The main advantage of using proportional weights is that the it allows the I/O 
bandwidth to be saturated – if nothing else is running, an application always gets 
all of the available I/O bandwidth. If, however, two or more processes in different 
cgroups are competing for access to the I/O bandwidth, then they will get a share 
that is proportional to the weights of their cgroups.

For example, suppose a process A is on a cgroup with weight 10 (the minimum 
value possible) is working on mass-processing of photos, and process B is on a 
cgroup with weight 1000 (the maximum). If process A is the only one making I/O 
requests, it has the full available I/O bandwidth available for itself. As soon as 
process B starts doing its own I/O requests, however, it will get around 99% of all 
the requests that get through, while process A will have only 1% for its requests.

The second strategy is setting an absolute limit on the I/O bandwidth, often called 
throttling. This is done by writing how many bytes per second a cgroup should be 
able to transfer into a virtual file called blkio.throttle.read_bps_device, that 
lives inside the cgroup. This allows a great deal of control, but also means 
applications belonging to that cgroup are not able to take advantage of the full I/O
bandwidth even if they are the only ones running at a given point in time.

31http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt


Specifying a default weight to all applications, lower weights for mass-processing 
jobs, and higher weights for time-critical applications is a good first step in not 
only securing the system, but also improving the user experience. The hard-limit 
of an upper bound on I/O operations can also serve as a way to make sure no 
application monopolizes the system's I/O.

As is usual for tunables such as these, more specific details on what settings 
should be specified for which applications is something that needs to be 
developed in an empirical, iterative way, throughout the development of the 
platform, and with actual target hardware. More details on the blkio subsystem 
support for cgroups can be obtained from Linux documentation32.

32http://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt

http://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt


8 NETWORK FILTERING
Collabora recommends the use of the Netfilter framework to filter network traffic. 
Netfilter provides a set of hooks inside the Linux kernel that allow kernel modules 
to register callback functions with the network stack. A registered callback 
function is then called back for every packet that traverses the respective hook 
within the network stack. Iptables is a generic table structure for the definition of 
rule sets. Each rule within an iptable consists of a number of classifiers (iptables 
matches) and one connected action (iptables target). 

Netfilter, when used with iptables, creates a powerful network packet filtering 
system which can be used to apply policies to both IPv4 and IPv6 network traffic. 
A base rule set that blocks all incoming connections will be added to the platform 
by default, but port 80 access will be provided for devices connected to the 
Apertis hotspot, so they can access the web server hosted on the system. See the
Connectivity document for more information on how this will work.

The best way to do that seems to be to add acceptance rules for the predefined 
private network address space the DHCP server will use for clients of the hotspot.

Collabora will offer support in refining the rules for the final product. Some 
network interactions may be handled by means of an AppArmor profile instead.



9 PROTECTING THE DRIVER ASSISTANCE SYSTEM FROM 
ATTACKS
All communication with the driver assistance system will be done through a single
service that can be talked to over D-Bus. This service will be the only process 
allowed to communicate with the driver assistance system. This means this 
service can belong to a separate user that will be the only one capable of 
executing the binary, which is Collabora's first recommendation.

The daemon will use an IP connection to the driver assistance system, through a 
simple serial connection. This means that the character device entry for this serial
connection shall be protected both by an udev33 rule that assigns permissions for 
only this particular user. Access to the device entry should also be denied by the 
AppArmor profile which covers all other applications, making sure the daemon's 
profile allows it.

Additionally, process namespace functionality can be used to make sure the driver
assistance network interface is only seen and usable by the daemon that acts as 
gatekeeper. This is done by using a Linux-specific flag to the clone34 system call, 
CLONE_NEWNET, which creates a new process with its network namespace limited 
to viewing the loopback interface.

Having the process in its own cgroup also helps making it more robust, since Linux
tries to be fair among cgroups, so is a good idea in general. Systemd already puts 
each service it starts in a separate cgroup, so making the daemon a system 
service is enough to take advantage of that fairness.

The driver assistance communication daemon shall be started with this flag on, 
and have the network interface for talking to the driver assistance system be 
assigned to its namespace. When a network interface is assigned to a namespace 
only processes in that namespace can see and interact with it. This approach has 
the advantage of both protecting the interface from processes other than the 
proxy daemon, and protecting the daemon from the other network interfaces.

9.1     PROTECTING DEVICES WHOSE USAGE IS RESTRICTED  

One or more cameras will be available for Apertis to control, but they should not 
be accessed by any applications other than the ones required to implement the 
driver assistance use cases. Cameras are made available as device files in the 
/dev file system and can thus be controlled by both DAC permissions and by 
making the default AppArmor policy deny access to it as well.

33http://en.wikipedia.org/wiki/Udev
34http://www.kernel.org/doc/man-pages/online/pages/man2/clone.2.html

http://www.kernel.org/doc/man-pages/online/pages/man2/clone.2.html
http://en.wikipedia.org/wiki/Udev


10 PROTECTING THE SYSTEM FROM INTERNET THREATS
The Internet is riddled with malicious or buggy code that present threats other 
than those that come from direct attacks to the device's IP connection. The user 
of a system such as the Apertis may face attacks such as emails that link to 
viruses, trojan horses and other kinds of malware, web sites that mislead the user 
or that try to cause the system to misbehave or become unresponsive.

There is no single answer to such threats, but care should be exercised to make 
each of the subsystems and applications involved in dealing with content from the
Internet robust to such malicious and buggy content. The solutions that have been
presented in the previous sections are essential for that.

The first line of defence is, of course, a good firewall setup that disallows incoming
connections, protecting the IP interfaces of the device. The second line of defence
is making sure that the applications that deal with those threats are well-written. 
Web browsers have also grown many techniques to protect the user from both 
direct attacks such as denial of service or private information disclosure and 
indirect forms of attack such as social engineering.

The basic rule of protecting the user from web content in a browser is essentially 
assuming all content is untrusted. There are fewer APIs that allow a web 
application to interact with local resources such as local files than there are for 
native applications. The ones that do exist are usually made possible only through
express user interaction, such as when the user selects a file to upload. Newer API
that allows access to device capabilities such as the geolocation facilities only 
work after the user has granted permission.

Browsers also try to make sure users are not fooled into believing they are in a 
different site than the one they are really at, known as “phishing”, which is one of 
the main social engineering attacks used on the web. The basic SSL certificate 
checks, along with proper UI to warn the user about possible problems can help 
prevent man-in-the-middle attacks35. The HTTP library used by the clutter port of 
WebKit is able to verify certificates using the system's trusted Certificate 
Authorities36.

In addition to those basic checks, WebKit includes a feature called XSS Auditor, 
which is enabled in the Clutter port. The XSS Auditor implements a number of 
rules and checks to prevent cross-site scripting37 attacks, sometimes used to mix 
elements from both a fake and a legitimate site.

The web browser can be locked down, like any other application, to limit the 
resources it can use up or get access to, and Collabora will be helping build an 
AppArmor profile for it. This is what protects the system from the browser in case 
it is exploited. By limiting the amount of damage the browser can do to the 
system itself, any exploits are also hindered from reaching the rest of the system.

It is also important that the UI of the browser behaves well in general. For 
instance, user interfaces that make it easy to run executables downloaded from 

35https://en.wikipedia.org/wiki/Man-in-the-middle_attack
36The ca-certificates package in Debian and Ubuntu carry those.
37http://en.wikipedia.org/wiki/Cross-site_scripting

http://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Man-in-the-middle_attack


the web make the system more vulnerable to attacks. A user interface that makes
it easier to distinguish the domain from the rest of the URI is sometimes employed
to help careful users be sure they are where they wanted to go38.

Automatically loading pages that were loaded or loading when the browser had to 
be terminated or crashed would make it hard for the user to regain control of the 
browser too. Existing browsers usually load an alternate page with a button the 
user can click to load the page, which is probably also a good idea for the Apertis 
browser.

Collabora evaluated taking the WebKit clutter port to the new WebKit2 
architecture as part of the Apertis project; as of 2012 it was deemed risky given 
the time and budget constraints.

As of 2015, it has been decided that Apertis will switch away from WebKit Clutter 
and onto the GTK+ port, which is already built upon the WebKit2 architecture. The
main feature of that architecture is that it has three different processes: the UI 
process deals with user interaction, the Web process deals directly with web 
content, and the plugin process is responsible for running plugins. 

The fact that the processes are separate provides a great way of locking them 
down properly. The Web process, which is the most likely to be exploited in case of
successful attack is also the one that needs the least privileges when it comes to 
interfacing with the system, so the AppArmor policies that apply to it can be very 
strict. If a limited set of plugins is supported, the same can be applied to the 
plugins process. In fact, the WebKit codebase contains support for using seccomp 
filters (see section 17) to sandbox the WebKit2 processes. It may be a useful 
addition in the future.

10.1     OTHER SOURCES OF POTENTIAL EXPLOITATION  

Historically, document viewers and image loaders have had vulnerabilities 
exploited in various ways to execute arbitrary code. PDF and spreadsheet files, for
instance, feature domain-specific scripting languages. These scripting facilities are
often sandboxed and limited in what they can do, but have been a source of 
security issues nevertheless. Images do not usually feature scripting, but their 
loaders have historically been the source of many security issues, caused by 
programming errors, such as buffer overflows. These issues have been exploited 
to cause denial of service or run arbitrary code.

Although these cases do deserve mention specifically for the inherent risk they 
bring, there is no silver bullet for this problem. Keeping applications up-to-date 
with security fixes, using hardening techniques such as stack protection, 
discussed in chapter 14, and locking the application down to its minimum access 
requirements are the tools that can be employed to reduce the risks.

10.1.1 LAUNCHING APPLICATIONS BASED ON MIME TYPE

It is common in the desktop world to allow launching an application through the 
files that they are able to read. For instance, while reading email the user may 

38http://chrome.blogspot.com.br/2010/10/understanding-omnibox-for-better.html

http://chrome.blogspot.com.br/2010/10/understanding-omnibox-for-better.html


want to view an attachment; by “opening” the attachment an application that is 
able to display that kind of file would be launched with the attachment as an 
argument.

Collabora is recommending that all kinds of application launching always go 
through the application manager. By doing that, there will be a centralized way of 
controlling and limiting the launching of applications through MIME or other types 
of content association, including being able to blacklist applications with known 
security issues, for instance.



11 SECURE SOFTWARE DISTRIBUTION
Secure software updates are a very important topic in the security of the platform.
Checking integrity and authenticity of the software packages installed in the 
system is crucial; an altered package might compromise the security of the whole 
platform. 

This section is only related with security aspects, not the whole software 
distribution update mechanism, which will be covered in a separate document. 
The technology used for this is the same one used by Ubuntu. It's called Secure 
APT39 and was introduced in Debian in 2005. 

Every Debian or Ubuntu package that is made available through an APT repository
is hashed and the hash is stored on the file that lists what packages are available, 
called the “Packages” file. That file is then hashed and the hash is stored in the 
Release file40, which is signed using a PGP private key. 

The public PGP key is shipped along with the product. When the package manager
obtains updates or new packages it checks that the signature on the Release file 
is valid, and that all hashes match. The security of this approach relies on the fact 
that any tampering with the package or with the Packages file would make the 
hashes not match, and any changes done to the Release file would render the 
signature invalid. 

Additional public keys can be distributed through upgrades to a package that 
ships installed; this is how Debian and Ubuntu distribute their public keys. This 
mechanism can be used to add new third-party providers, or to replace the keys 
used by the app store. Collabora will provide documentation and provide 
assistance on setting up the package repositories and signing infrastructure.

39http://wiki.debian.org/SecureApt
40http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums

http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
http://wiki.debian.org/SecureApt


12 SECURE BOOT
The main goal of secure boot is to avoid system kernel replacement. The full 
specification for the solution depends on a definition from Freescale regarding 
their plans.

A solution that has been adopted by Freescale in the past is the High Assurance 
Boot (HAB), which ensures two basic attributes: authenticity and integrity. This is 
done by validating that the code image originated from a trusted source 
(authenticity), and verify that the code is in its original form (integrity). HAB uses 
digital signatures to validate the code images and thereby establishes the 
security level of the system. 

To verify the signature the device uses the Super Root Key (SRK) which is stored 
on-chip in non-volatile memory. To enhance the robustness of HAB security, 
multiple Super Root keys (RSA public keys) are stored in internal ROM. Collabora 
recommends the utilization of SRK with 2048-bit RSA keys.

In case a signature check fails because of incomplete or broken upgrade it should 
be possible to fall back to an earlier kernel automatically. Details of how that 
would be achieved are only possible after details about the hardware support for 
such a feature are provided by Freescale, and are probably best handled in the 
document about safely upgrading, system snapshots and rolling back updates.

More discussion of system integrity checking, its limitations and alternatives can 
be found later on, when the IMA system is investigated. See section 16.1 in 
particular.

The signature and verification processes are described in the Freescale white 
paper “Security Features of the i.MX31 and i.MX31L”.



13 DATA ENCRYPTION AND REMOVAL

13.1     DATA ENCRYPTION  

The objective of data encryption is to protect the user data for security and 
privacy reasons. In the event of the car being stolen, for instance, important user 
data such as passwords should not be easily readable. While providing full disk 
encryption is both not practical and harmful to overall system performance, 
encryption of a limited set of the data such as saved passwords is possible.

The Secrets D-Bus service41 is a very practical way of storing passwords for 
applications. Its GNOME implementation42 provides an easy to use API, uses 
locked down memory when handling the passwords43 and encrypted storage for 
the passwords on disk. Collabora will provide these tools in the base platform and 
will support the implementation of secure password storage in the applications 
that will be developed.

One unresolved issue for data encryption, whether via the Secrets service, a full-
disk encryption system (as optionally used in Android) or some other 
implementation, is that a secret token must be provided in order to decrypt the 
encrypted data. This is normally a password, but prompting for a password is 
likely to be undesired in an automotive environment. One possible 
implementation is to encode an unpredictable token in each car key, and use 
those tokens to decrypt stored secrets, with any of the keys for a particular car 
equally able to decrypt its data. In the simplest version of that implementation, 
loss of all of the car keys would result in loss of access to the encrypted data, but 
the car vendor could retain copies of the keys' tokens (and a record of which car is
the relevant one) if desired 

13.2     DATA REMOVAL  

A data removal feature is important to guarantee that personal user data that 
resides on the device can be removed before the car changes hands, for instance.
Returning the device configuration to factory is also important because it allows 
resetting of any customization and preferences.

Collabora recommends these features be implemented by making sure user data 
and settings are stored in a separate storage area. By removing this area both 
user data and configuration are removed.

Proper data wiping is only necessary to defeat forensic analysis of the hardware 
and would not pose a privacy risk for the simpler cases of the car changing hands.
Such procedures rely on hardware support, so would only be possible if that is in 
place, and even in that case they may be very time consuming. It's also worth 
noting that flash storage will usually perform wear levelling, which defeats 
software techniques such as writing over a block multiple times. Collabora 
recommends not supporting this feature.

41http://standards.freedesktop.org/secret-service/re01.html
42https://wiki.gnome.org/Projects/GnomeKeyring
43https://wiki.gnome.org/Projects/GnomeKeyring/Memory

https://wiki.gnome.org/Projects/GnomeKeyring/Memory
https://wiki.gnome.org/Projects/GnomeKeyring
http://standards.freedesktop.org/secret-service/re01.html


14 STACK PROTECTION
It is recommended to enable stack protection, which provides protection against 
stack-based attacks such as a stack buffer overflow. Ubuntu, the distribution used 
as a base for Apertis has enabled a stack protection mechanism offered by GCC 
called SSP44. Modern processors have the capability to mark memory segments 
(like stack) executable or not, which can be used by applications to make 
themselves safer.  Some initial tests with the Freescale kernel 2.6.38 provided on 
imx6 board shows correct enforcement behaviour.

Memory protection techniques like disabling execution of stack or heap memory 
are not possible with some applications, in particular execution engines such as 
programming language interpreters that include a just in time compiler, including 
the ones for JavaScript currently present in most web engines. Cases such as this 
and also cases in which the limitations should apply but are not being respected 
will be documented.

Collabora will also document best practices for building software with this feature 
so that others can take advantage of stack protection for higher level libraries and
applications.

44https://wiki.ubuntu.com/GccSsp

https://wiki.ubuntu.com/GccSsp


15 CONFINING APPLICATIONS IN CONTAINERS

15.1     LXC CONTAINMENT  

LXC containers45 is a solution that was developed to be a lightweight alternative to
virtualization, built on top of cgroups and namespaces, mainly. Its main focus is on
servers, though. The goal is to separate processes completely, including using a 
different file system and a different network. This means the applications running 
inside an LXC container are effectively running in a different system, for all 
practical purposes. While this does have the potential of helping protect the main 
system, it also brings with it huge problems with the integration of the application 
with the system.

For graphical applications the X server will have to run with a TCP port open, so 
that applications running in a container are able to connect, 3D acceleration will 
be impossible or very difficult to achieve for applications running in a container. D-
Bus setup will be significantly more complex.

Besides increasing the complexity of the system, LXC essentially duplicates 
functionality offered by cgroups, AppArmor, and the Netfilter firewall. When LXC 
was originally suggested it was to be used only for system services. By using 
systemd the Apertis system will already have every service on the system running
on their own cgroup, and properly locked down by AppArmor profiles. This means 
adding LXC would only add redundancy and no additional value.

Protection for the driver assistance and limiting the damage root can do to the 
system can both be achieved by AppArmor policies, which can be applied to both 
system services and applications, as opposed to LXC, which would only be safely 
applicable to services. There are no advantages at all in using LXC for these cases.
Limiting resources can also be easily done through cgroups, which will not be 
limited to system services, too. For these reasons Collabora recommends against 
using LXC.

15.1.1 MAKING X11, D-BUS AND 3D WORK WITH LXC

For the sake of completeness, this section provides a description of possible 
solutions for LXC shortcomings.

LXC creates what, for all practical purposes, is a separate system. X supports TCP 
socket connections, so it could be made to work, but that would require opening 
the TCP port and that would be another interface that needs protection.

D­Bus has the same pros and cons of X11 – it can be connected to over a TCP 
port46, but that again increases the surface area that needs to be protected, and 
adds complexity for managing the connection. It is also not a popular use case so 
it does not get a lot of testing.

3D over network has not yet been made to work on networked X. All solutions 
available, such as Virtual GL47 involve a lot of copying back and forth, which would

45http://lxc.sourceforge.net/
46http://www.freedesktop.org/wiki/Software/DBusRemote
47http://www.virtualgl.org/

http://www.virtualgl.org/
http://www.freedesktop.org/wiki/Software/DBusRemote
http://lxc.sourceforge.net/


make performance suffer substantially, which is something that needs to be 
avoided given the high importance of performance on Apertis requirements.

Collabora's perspective is that using LXC for applications running on the user 
session adds nothing that cannot be achieved with the means described in this 
document, while at the same time adding complexity and indirection.

15.2     THE XDG-APP FRAMEWORK  

xdg-app48 is a framework for “sandboxed” desktop applications, under 
development by several GNOME developers. Like LXC, it makes use of existing 
Linux infrastructure such as cgroups (see section 7) and namespaces.

Unlike LXC, xdg-app's design goals are focused on confining individual 
applications within a system, which makes it an interesting technology for Apertis.
We recommend researching xdg-app further, and evaluating its adoption as a way
to reduce the development effort for our sandboxed applications.

One secondary benefit of xdg-app is that by altering the application bundle's view 
of the filesystem, it can provide a way to manage major-version upgrades without 
app-visible compatibility breaks, by continuing to run app bundles that were 
designed for the old “runtime” in an environment more closely resembling that old
version, while using the new “runtime” for app bundles that have been tested in 
that environment.

48https://wiki.gnome.org/Projects/SandboxedApps

https://wiki.gnome.org/Projects/SandboxedApps


16 THE IMA LINUX INTEGRITY SUBSYSTEM
The basics of the Integrity Measurement Architecture49 (IMA) subsystem have 
been a part of Linux since the version 2.6.30, viewing of the records has been 
included in 2.6.36, and local verification has been submitted to the kernel 
maintainers very recently, in late January 201250. The goal of the subsystem is to 
make sure that a given set of files have not been altered and are authentic – in 
other words, provided by a trusted source. The mechanism used to provide these 
two features are essentially keeping a database of file hashes and RSA signatures.
IMA does not protect the system from changes, it is simply a way of knowing that 
changes have been made so that measures to fix the problem can be taken as 
quickly as possible. The authenticity module of IMA is still not available, so we 
won't be discussing it.

In its simpler mode of operation, with the default policy IMA will intercept calls 
that cause memory mapping and execution of a file or any access done by root 
and perform a hash of the file before the access goes through. This means 
execution of all binaries and loading of all libraries are intercepted. To hash a file, 
IMA needs to read the whole file and calculate a cryptographic sum of its 
contents. That hash is then kept in kernel memory and extended attributes of the 
file system, for further verification after system reboots.

This means that running any program will cause its file and any libraries it uses to 
be fully read and cryptographically processed before anything can be done with it,
which causes a significant impact in the performance of the system. A 10% 
impact has been reported by the IMA authors in boot time on a default Fedora51. 
There are no detailed information on how the test was performed, but the 
performance impact of IMA is mainly caused by increased I/O required to read the 
whole of all executable and library files used during the boot for hash verification. 
All executables will take longer to start up after a system boot up because they 
need to be fully read and hashed to verify they match what's recorded (if any 
recording exists).

The fact that the hashes are maintained in the file system extended attributes, 
and are otherwise created from scratch when the file is first mapped or executed 
means that in this mode IMA does not protect the system from modification while 
offline: an attacker with physical access to the device can boot using a different 
operating system modify files and reset the extended attributes. Those changes 
will not be seen by IMA.

To overcome this problem IMA is able to work with the hardware's trusted platform
module through the extended verification module52 (EVM), added to Linux in 
version 3.253: hashes of the extended attributes are signed by the trusted platform
module (TPM) hardware, and written to the file system as another extended 
attribute. For this to work, though, TPM hardware is required. The fact that TPM 

49http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page
50http://thread.gmane.org/gmane.linux.file-systems/61111/focus=61121
51 http://linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
52http://sourceforge.net/apps/mediawiki/linux-ima/index.php?

title=Main_Page#Linux_Extended_Verification_Module_.28EVM.29
53http://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084

http://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084
http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page#Linux_Extended_Verification_Module_.28EVM.29
http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page#Linux_Extended_Verification_Module_.28EVM.29
http://linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
http://thread.gmane.org/gmane.linux.file-systems/61111/focus=61121
http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page


modules are currently only widely available and supported for Intel-based 
platforms is also a problem.

16.1     CONCLUSION REGARDING IMA AND EVM  

IMA and EVM both are only useful for detecting that the system has been 
modified.  They do so using a method that incurs significant impact on the 
performance, particularly application startup and system boot up. Considering the
strict boot up requirements for the Apertis system, this fact alone indicates that 
IMA and EVM are suboptimal solutions. However, EVM and IMA also suffer from 
being very new technologies as far as Linux mainline is concerned, and have not 
been integrated and used by any major distributions. This means implementing 
them in Apertis means incurring into significant development costs.

In addition to that, Collabora believes that the goals of detecting breaches, 
protecting the base system and validating the authenticity of system files are 
attained in much better ways through other means, such as keeping the system 
files separate and read-only during normal operation, and using secure methods 
for installing and updating software, such as those described in section 9,  
Protecting the driver assistance system from attacks.

For these reasons Collabora advises against the usage of IMA and EVM for this 
project. An option to provide some security for the system in this case is making it
hard to disconnect and remove the actual storage device from the system, to 
minimize the risk of tampering.



17 SECCOMP
Seccomp54 is a sandboxing mechanism in the Linux kernel. In essence, it is a way 
of specifying which system calls a process or thread should be able to make. As 
such, it is very useful to isolate processes that have strict responsibilities. For 
instance, a process that should not be able to write or read from the disk should 
not be able to make an open system call.

Most security tools that were discussed in this document provide a system-wide 
infrastructure and protect the system in a general way from outside the 
application's process. As opposed to those, seccomp is something that is very 
granular and very application-specific: it needs to be built into the application 
source code.

In other words, applications need to be written with an architecture which allows a
separation of concerns, isolating the work that deals with untrusted processes or 
data to a separate process or thread that will then use seccomp filters to limit the 
amount of damage it is able to do through system calls.

For use by applications, seccomp needs to be enabled in the kernel that is shipped
with the middleware. There is a library called libseccomp55, which provides a 
more convenient way of specifying filters. Should feature be used and made it 
available through the SDK, the seccomp support can be enabled in the kernel and 
libseccomp can be shipped in the middleware image provided by Collabora.

The seccomp filter should be used on system services designed for Apertis whose 
architecture and intended functionality allow dropping privileges. Suppose, for 
instance, that Apertis has a health management daemon which needs to be able 
to kill applications that misbehave but has no need whatsoever of writing data to 
a file descriptor. It might be possible to design that daemon to use seccomp to 
filter out system calls such as open and write. The open system call might need 
to be allowed to go through for opening files for reading, depending on how the 
health daemon monitors processes – it might need to read information from files 
in the /proc file system, for instance. For that reason, filtering for open would 
need to be more granular, just disallowing it being called with certain arguments.

Depending on how the health management daemon works it would also not need 
to fork new processes itself, so filtering out system calls such as fork, and clone 
is a possibility. As explained before, to take advantage of these opportunities, the 
architecture of such a daemon needs to be thought through from the onset with 
these limitations in mind. Opportunities, such as the ones discussed here, should 
be evaluated on a case-by-case basis, for each service intended for deployment 
on Apertis.

AppArmor and seccomp are complementary technologies, and can be used 
together. Some of their purposes overlap (for example, denying filesystem write 
access altogether could be achieved equally well with either technology), and 
they are both part of the kernel and hence in the TCB.

The main advantage of seccomp over AppArmor is that it inhibits all system calls, 

54https://github.com/torvalds/linux/blob/master/Documentation/prctl/seccomp_filter.txt
55https://lwn.net/Articles/494252/

https://lwn.net/Articles/494252/
https://github.com/torvalds/linux/blob/master/Documentation/prctl/seccomp_filter.txt


however obscure: all system calls that were not considered when writing a policy 
are normally denied. Its in-kernel implementation is also simpler, and hence 
potentially more robust, than AppArmor. This makes it suitable for containing a 
module whose functionality has been designed to be strongly focused on 
computation with minimal I/O requirements, for example the rendering modules of
browser engines such as WebKit2. However, its applicability to code that was not 
designed to be suitable for seccomp is limited. For example, if the confined 
module has a legitimate need to open files, then its seccomp filter will need to 
allow broad categories of file to be opened.

The main advantage of AppArmor over seccomp is that it can perform finer-
grained checking on the arguments and context of a system call, for example 
allowing filesystem reads from files owned by the process's uid, but denying reads
from other uids' files. This makes it possible to confine existing general-purpose 
components using AppArmor, with little or no change to the confined component. 
Conversely, it groups together closely-related system calls with similar security 
implications into an abstract operation such as “read” or “write”, making it 
considerably easier to write correct profiles.



18 THE ROLE OF THE APP STORE PROCESS FOR SECURITY
The model which is used for the application stores should precludes automated 
publishing of software to the store by developers. All software, including new 
versions of existing applications will have to go through an audit before 
publishing.

The app store vetting process will generate the final package that will reach the 
store front. That means only signatures made by the app store curator's 
cryptographic keys will be valid, for instance. Another consequence of this 
approach is that the curator will have not only the final say on what goes in, but 
will also be able to change pieces of the package to, say, disallow a given 
permission the application's author specified in the application's manifest.

This also presents a good opportunity to convert high level descriptions such as 
the permissions in the manifest and an overall description of files used into 
concrete configuration files such as AppArmor profiles in a centralized fashion, 
and provides the curator with the ability to fine tune said configurations for 
specific devices or even to rework how a given resource is protected itself, with no
need for intervention from third-parties.

Most importantly, from the perspective of this document, is the fact that the app 
store vetting process provides an opportunity for final screening of submissions 
for security issues or bad practices both in terms of code and user interface, so 
that should be taken into consideration.



19 HOW DOES SECURITY AFFECT DEVELOPER USAGE OF A 
DEVICE?
How security impacts a developer mode depends heavily on how that developer 
mode of work is specified. This chapter considers that the two main use cases for 
such a mode would be installing an application directly to the target through the 
Eclipse install to target plugin and running a remote debugging session for the 
application, both of which are topics discussed in the SDK design.

The install to target functionality that was made available through an Eclipse 
plugin uses an sftp connection with an arbitrary user and password pair to 
connect to the device. This means that putting the device in developer mode 
should ensure the ssh server is running and add an exception to the firewall rules 
discussed in chapter 8, Network filtering, to allow an inbound connection to port 
22.

Upon login, the SSH server will start user sessions that are not constrained by the 
AppArmor infrastructure. In particular the white-list policy discussed in session
5.4.5, Implementing a white-list approach, will not apply to ssh user sessions. This
means the user the IDE will connect with needs file system access to the directory
where the application needs to be installed or be able to tell the application 
installer to install it.

The procedure for installing an application using an sftp connection is not too 
different from the install app from USB stick use case described in the 
Applications document, that similarity could be exploited to share code for these 
features.

The main difference is the developer mode would need to either ignore signature 
checking or accept a special “developer” signature for the packages. Decision on 
how to implement this piece of the feature needs a more complete assessment of 
proposed solutions on how the app store and system DRM could work, and how 
open (or openable) the end user devices will be.

Running the application for remote debugging also requires that the gdbserver's 
default port, 2345, be open. Other than that, the main security constraint that will
need to be tweaked when the system is put in developer mode is AppArmor. While
under developer mode AppArmor should probably be put in complain mode, since 
the application's own profile will not yet exist.



20 FURTHER DISCUSSION
This chapter lists topics that require further thinking and/or discussion, or a more 
detailed design. These may be better written as Wiki pages rather than formal 
designs, given they require and benefit from iterating on an implementation.

• Define which cgroups (section 7) to have, how they will be created and 
managed

• Define exactly what Netfilter rules (section 8) should be installed and how
they will be made effective at boot time

• Evaluate xdg-app (section 15.2)


	Document Change Log
	1 Overview
	2 Terminology
	2.1 Privilege
	2.2 Trust
	2.3 Integrity, confidentiality and availability

	3 Security boundaries and threat model
	3.1 Security between applications
	3.2 Communication between applications
	3.3 Security between users
	3.4 Security between platform services
	3.5 Security between the device and the network
	3.6 Physical security

	4 Solutions adopted by popular platforms
	4.1 Android
	4.2 Bada
	4.3 iOS

	5 Mandatory Access Control
	5.1 Linux Security Modules (LSM)
	5.1.1 SELinux
	5.1.2 TOMOYO Linux
	5.1.3 SMACK
	5.1.4 AppArmor

	5.2 Comparison
	5.3 Performance impact
	5.4 Conclusion
	5.4.1 AppArmor Policy and management examples
	5.4.2 Profiles for libraries
	5.4.3 Application installation and upgrades
	5.4.4 A note about root
	5.4.5 Implementing a white-list approach


	6 polkit (PolicyKit)
	6.1 Motivation for polkit
	6.2 polkit's solution
	6.3 Recommendation
	6.3.1 Alternative design: rely entirely on AppArmor checks


	7 Resource Usage Control
	7.1 Imposing limits on I/O for block devices

	8 Network filtering
	9 Protecting the driver assistance system from attacks
	9.1 Protecting devices whose usage is restricted

	10 Protecting the system from Internet threats
	10.1 Other sources of potential exploitation
	10.1.1 Launching applications based on MIME type


	11 Secure Software Distribution
	12 Secure Boot
	13 Data encryption and removal
	13.1 Data encryption
	13.2 Data removal

	14 Stack Protection
	15 Confining applications in containers
	15.1 LXC Containment
	15.1.1 Making X11, D-Bus and 3D work with LXC

	15.2 The xdg-app framework

	16 The IMA Linux Integrity Subsystem
	16.1 Conclusion regarding IMA and EVM

	17 Seccomp
	18 The role of the app store process for security
	19 How does security affect developer usage of a device?
	20 Further discussion

