>

Apertis
Supported API
Design

Author: Gustavo Noronha

Contributors: Gustavo Boiko, Travis Reitter, Sjoerd Simons,
Tomeu Vizoso, Philip Withnall

Version: 1.3

Status: Draft

Date: 16 November 2015

Last Reviewer: Unreviewed

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

1.3 2015-11-16 Update to new name Apertis
Removed file custom properties (metadata)

1.2 2015-03-28 Add references to GIR
1.0 2013-03-04 Make it final

0.4.2 2012-09-17 Moved chapter on software management into the
applications design

0.4.1 2012-09-14 Accepted review done by Derek Foreman

0.4.0 2012-09-12 Added diagrams for API level and software layers

Clarified custom APIs and which APIs form the SDK APIs

0.3.1 2012-05-11 Updated title and file name to follow Document Naming
Scheme

Moved Change Log before table of contents for
consistency with other designs

2012-03-19 Added change log
Added description of the 5 supported API levels as
discussed during the workshop
Polished the section about application installation and
update management

Table of Contents

DOCUMENT Change LOg. .. i e e es 2
L INErOAUCTION Lottt 4
2 New releases and APl stability........oovuviiiiii 5
3 APl and ABI stability strategies.....ccooviiiii s 6
3.1 The ANdroid @pPPrOaCh.... .. e 6
3.2 The 10S @PPrOACKH. ... e e e 6
3.3 The Apertis/OpenSource approach.......cocvi i 7
3.4 The role of limiting the supported APl surface.........c.ccooviiiiiiiiii i 8
3.5 How would incompatible changes impact the product and how to handle
1 0 1= 0 0 1 PP PPP 9
3.5.1 The GTK+ upgrade and a Clutter APl break...........ccooiiiiiiiiiiiie, 9
3.5.2 When a core library breaks..........ooviiiiii e 10
3.5.3 When a “leaf” library breaks ABl.......c.coiiiiiiiiiii e 10
3.5.4 ABIl is not just library symbols.........cccoiiiiii e 10
3.5.5The move to Wayland.........cooiiiiiii e 11
3.5.6 The GTK+ and Clutter Merger.....co.o i e 11
4 APl SUPPOIE [EVEIS. .. e 13
AL CUSEOM APIS et 13
4.2 ENADIING APIS o it 14
4.3 08 APIS . e 15
4.4 INEEINAl APIS e i 15
4.5 EXEOINAl APIS e it 15
4.6Differing stability 1@Vels........oou e 16
4.7Maintaining APl stabilityo 16
D O PO NS i 18
SR @le] o Tl 1V 1= o] o F PP 23

Index of Tables
Table 1: List Of COMPONENTS......iiiiii e 20

1 INTRODUCTION

The goal of this document is to explain the relevant issues around API (Application
Programming Interface) and ABI (Application Binary Interface) stability and to
make explicit the APls and ABIs that can be and will be guaranteed to be available
in the platform for application development.

It will be explained as well how we are going to deal with situations where certain
components break their API/ABI.

2 NEW RELEASES AND API STABILITY

Software systems are typically composed of several components with some
depending on others. Components need to make assumptions about how their
dependencies behave, in order to use them. These assumptions are categorized in
API and ABI depending on whether they are resolved at build time or at runtime,
respectively. As components evolve over time and their behavior changes, so may
their APl and ABI.

In systems composed of thousands of components, each time a component
changes, potentially hundreds of other components could break. Fixing each of
those components could cause other breaks in turn. Without a way to manage
those changes, assembling and maintaining non-trivial systems wouldn't be a
practical enterprise.

To manage this complexity, components which are to be depended upon by others
set an API/ABI stability policy. This policy states under which circumstances new
releases can be expected to break APl or ABI. This allows the system integrator to
update to newer releases of components with some assurance that other
components won't break as a result. These guarantees also allow new releases of
components to simply depend upon the last "known-good" release of each of their
dependencies instead of requiring them to be constantly tested against newer
dependencies.

Most components will keep stable branches in which API - and often ABI - are not
allowed to break, and normally only bug fixes and minor features will be merged
into these branches. It is generally recommended that components (particularly,
stable ones) depend only on stable branches of their dependencies. Releases in a
stable branch are referred to as "backwards compatible" because components
that depend upon a given release will continue to work with later releases in that
same branch.

By libraries keeping API stability in stable branches and by libraries and
applications depending on stable versions of libraries, breaks are greatly reduced
to manageable levels.

An API can consist of multiple parts: for a typical C library, the API will be the C
function and type declarations, plus the gobject-introspection (GIR) description of
the API. Similarly, an ABI can consist of multiple parts: the C function and type
declarations, plus the D-Bus API for a system service, for example.

The GIR API is especially relevant for further development of Apertis, as it is
planned to allow apps to be written in non-C languages such as JavaScript. In this
situation, API stability requires both the C declarations to be stable, plus the
conversion of those declarations to a GIR file to be stable — so it is affected by
changes in the implementation of the GIR scanner (the g-ir-scanner utility
provided by gobject-introspection). This is covered further in section 3.5.4.

3 API AND ABI STABILITY STRATEGIES

There is a tension between keeping the development environment stable and
keeping up with novelties. Following is an investigation about how various mobile
platforms have tackled this issue that hopefully provides enough information for a
practical strategic decision on how to handle that tension.

3.1 THE ANDROID APPROACH

Android makes a promise of forward-compatibility for the main Android APIs.
Although Android has been built on top of Linux and using a Java virtual machine,
no APIs of these platforms are considered to be part of the Android platform.

Instead of reusing existing components and libraries Google decided to write
almost everything from scratch, including a C library, a graphics subsystem,
audio, web and multimedia subsystems and APIs.

This approach has the big disadvantage of not reusing and sharing much of the
work done by the open source community in similar projects, which means a
significant investment and hundreds of thousands of hours of engineering time
spent building and maintaining everything. On the plus side, those APIs and the
underlying components they are built upon are fully controlled by Google, and
submit to whatever requirements the Android platform has, giving Google full
control regarding tilting the balance in favour of stability or break-through as it
sees fit.

Although Google has been very successful in keeping its API/ABI stability
promises, it has made incompatible changes in almost every release. From API
level 13 to 14 (in other words, from Android 3.2 to 4.0) alone there were a few
dozen API deprecations and removals?, including methods, class and interface
fields, and so on. Each new version brings in its release notes a report of API
differences compared to the last version. In addition to these, underlying
component changes have caused applications to misbehave and crash when
assuming a certain behaviour that got changed.

3.2 THE 10S APPROACH

Apple has been known for wanting to control every bit of the products they make.
From hardware all the way to third-party application design, Apple tends to
influence or enforce its own rules. The iOS is no exception: instead of reusing
existing open source APIs, Apple designed and built their own components and
APIs from the ground up. The same disadvantages Android's approach has are
also present here: instead of sharing the cost of building all of the basic tools with
lots of developers world wide, Apple decided to build everything itself, making a
significant investment in terms of money and engineering time.

The main difference between Android and iOS, though, are that Apple did not
have to start from scratch: they had Mac OS X already, and were able to reuse
some of the work they have done previously, although that itself brings a

1 http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

disadvantage: the need to balance the needs of the desktop use case and the
mobile use case in a single code base. The advantages, though, are the same:
Apple is fully in control of the system from the ground up, and can make decisions
on tilting the balance between stability and break-through.

Apple, like Google, has also been successful keeping compatibility, but has had its
set of incompatible changes in every release. The API changes between iOS 4.3 to
5, for instance, has a couple tens of removed or renamed classes, fields and
methods?.

3.3_ THE APERTIS/OPENSOURCE APPROACH

Open source projects like GNOME have been very successful at providing balance
to the tension by having API/ABI stability promises, but as the need for technology
overhauls appeared, keeping backwards compatibility has often proven very
costly, and a choice to break compatibility and refresh the platform has been
made.

That was the case, for instance, with the recently released GNOME3. The GNOME
project had to some extent maintained compatibility with applications that were
written all the way back in 2002, and had accumulated a considerable amount of
deprecated functionality and APIs that burdened the project, slowing down progress
and requiring a lot of maintfenance work. Those had to e left behind the project in
order to bring it up-to-date with the expectations of the current decade.

The big advantage of using open source components is most of the hard work of
building all of the pieces of infrastructure and even some applications has been
made, leaving hardware integration, application development, customization,
specific features and QA as the main required work before going to market, instead
of having a much larger team that would build everything from scratch, or licensing a
proprietary components.

The main disadvantage to this approach is that the decision on how to filt the
balance between stability and freshness is not under the full control of the company
building the product: some decisions will be made by the projects that build the
various components that make up the solution that can increase the cost of keeping
stability while still maintaining freshness.

For instance: Google has full control of Android's underlying graphics stack, Surface
Flinger, and is able to ensure its compatibility moving forward; it is also able fo make
APIs deal transparently with changes in this underlying layer. The same goes for Apple
and its iOS. When it comes to the open source graphics stack, a move from the
current Xorg infrastructure to the next-generation Wayland will break some of the
underlying assumptions made by applications.

Some of the core libraries that are parts of the graphics stack are also likely to
change, taking advantage of the API stability break imposed by the move to a new
graphics infrastructure to also perform some changes to their core and APIs. Some
projects may also decide to break their stability promises from time to time for

2 https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html

https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html

technology overhauls, like GNOME did with GNOME 3. We wiill investigate some
theoretical and real world cases in order to get a more concrete example of how
these overhauls may present themselves, and how they can be handled.

There are several options when dealing with backwards-incompatible novelties:
delaying the integration of a new release, for instance, is the best way to guarantee
stability, but that will only delay the impact of the changes. Building a set of APIs that
abstract some of the platform can also be sensible: applications using high level
widgets can be shielded from changes done at the lower levels — Clutter, Mx, and so
on.

To conclude: taking advantage of open source code takes away some of the control
over the platform's future. While Google and Apple are able to decide exactly what
happens to the components that make up Android and iOS in the future, someone
basing their product on an open source platform doesn't. It's important to notfice that
that is also the case for companies building products based on Android, and maybe
even more so: when Google decided that Android Honeycomb would not be
released, many companies were left without the latest version of Android to base
their products on.

Also, like GNOME, Windows and Mac OS have started afresh at some point in time, to
e able to bring their products to the next level, it is very likely there will come a fime
in which iOS and Android will go through a similar major change on their foundations,
and companies basing their products on Android will have to decide how to handle
the upgrade, when it happens.

3.4 THE ROLE OF LIMITING THE SUPPORTED API SURFACE

While the APl and ABI promises made by Android and iOS have been largely
successful, it is important to note that they do not cover everything an application
may need. Core services like graphics and networking are covered, but more
specific functionality is not. One example is JSON processing. JSON is one of the
most widely used formats for exchanging data between apps and servers.

There are no APIs at all for this format in iOS. Applications that need to use JSON
need to either roll their own implementation or embed a JSON processing library
into their application. The same goes for APIs to access Youtube and other Google
services through its GData protocol®.

Android has similar limitations. Android devices are not guaranteed to have APIs
for Google services, and although add-ons exist to bolt on those APIs, they cannot
be redistributed, in some cases. For services that use GData, there is also an add-
on library that can be embedded in the application, but there are no API/ABI
guarantees.

Imposing those limits on which APIs are guaranteed to not change (or change as little
as possible in reality) makes it possible for Android and iOS to lower the maintenance
costs for the platform, while making it possible to embed libraries intfo applications

3 See http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/ for more examples of
missing APIs and replacements that can be embedded

http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/

allows applications to not be completely limited by the available standard APIs. Note
also that embedded libraries can only be used by the application embedding it,
avoiding inter-application dependencies. That is one of the reasons Collabora is
suggesting that a set of libraries be specified to be handled as supported.

3.5 HOW WOULD INCOMPATIBLE CHANGES IMPACT THE PRODUCT
AND HOW TO HANDLE THEM?

This section aims at investigating some cases where a line was drawn and old APIs
were left behind, and how products based on or simply shipping those APIs handled
it. The recent arrival of GNOME 3 in early 2011 drew the line and allowed for the clean
up of APIs that were almost 10 years old, with few or no forward compatibility
breakages through that period. It provides a lot of insights at how to handle that kind
of structural overhaul.

3.5.1 THE GTK+ UPGRADE AND A CLUTTER API BREAK

GTK+ is the main toolkit used by the GNOME system. The upgrade to GTK+ 3.0 was
very smooth, for such a big upgrade. Applications required changes, but not all
applications needed to be ported at once, since everything that made up the library
changed name, making it installable in parallel with GTK+ 2. This means simple
applications written using the toolkit still work, even if you have GTK+ 3-based
applications installed and working. So that is exactly how distributors handled the
situation: bofth libraries are installed as long as there are applications that need the
old one.

A very similar situation would surface if Clutter and Mx happened to break their API
and ABI promises: applications that aren't updated to use the new APIs and ABIs
would simply continue using the older Clutter and Mx libraries. An additional burden
would appear for the teams designing higher level widgets, though: the widgets
would have to be supported for both library versions, and care would need to be
taken to not have an application link to the old Clutter/Mx and with the higher level
widgets built with the new ones.

There are several facilities to make this possible available in the debian packaging
tools used by the base distribution Apertis is built on, and also in the development
tools used by those libraries. Provided they are used correctly this specific case should
not prove too difficult. Most distributions that handled this kind of breakage spent a ot
of fime tuning dependencies and other package relationships, and making sure no
interfaces other than the binary ones were in disagreement, though. Some of the
Collabora developers who are participating in the Apertis project are responsible for
a significant part of the work that has been done to make the transition smooth in
Debian. Their experience with it is that it is a very time consuming process, with many
corner cases and subftleties to be taken care of, and even then several frade-offs had
to be made.

3.5.2 WHEN A CORE LIBRARY BREAKS

Some applications are a bit special: most browser plugins, for instance, relied on the
browser being written in GTK+ 2 — since that is what Firefox uses on Linux/X11. That is not
a problem for a browser built in Qf, or Clutter, for instance, since they can look for the
system GTK+ 2 library, open it and use its symbols to perform the initialization some
plugins expect. It is a problem, though, for browsers written in GTK+ 3: as soon as the
plugin is loaded there will be symbols from both GTK+ 3 and GTK+ 2 in the symbol
resolution table, and that will lead to subtle and hard o debug bugs, and o crashes.
That is one of the reasons why Firefox has decided to not move to GTK+ 3.

The same happens with GStreamer plugins. If a library is used by both a GStreamer
plugin and an application, and that library changes the same problem described for
browser plugins would happen. That would be the case if, for instance, an application
uses clutter-gst — since the application and the clutter-gst video sink both link to
Clutter, they would need to be linked to the same version of the library to work
properly.

Plugins are not the only case in which such problems happen. If a core library like glib
breaks compatibility similar issues will appear for all of the platform. Almost every
application links to glib and so do many libraries, including core ones like Clutter. If o
new version of glib is released which breaks ABI, all of these would have to be
migrated o the new library at once, otherwise symbol clashes like the ones described
above would happen. In GNOME 3 glib has not broken compatibility, but it is
expected to break it at some point in the (medium term) future.

As discussed in the previous section, ensuring forward compatibility after such a break
in the ABI of glib would only be possible with a very significant effort, and might prove
to not be viable. Collabora would recommend that turning points like this be freated
as major upgrades to the platform, requiring applications to be reworked. Such
upgrades can be delayed by a few releases to allow enough time for the
applications to be updated, though.

3.5.3 WHEN A “LEAF” LIBRARY BREAKS ABI

When a core library such as glib breaks, the impact will be felt throughout the
platform, but when a library that is used only by a few components breaks there is
more room for adjustment. It's unlikely that both libraries and applications would link to
libstartup-notification, for instance. In such cases the new version of the library can be
shipped along with the old one, and the old one can be maintained for as long as
necessary.

3.5.4 ABI IS NOT JUST LIBRARY SYMBOLS

A leaf library may end up causing more issues, though, if it breaks. GNOME 3 has
provided us with an example of that: the GNOME keyring is GNOME's password
storage. It's made up of a daemon (that among other things provides a D-Bus
service), and a client library for applications to use. GNOME keyring has undergone a
change in the protocol, and both the library and the daemon were updated. The

library was parallel installable with the old one, but the new daemon completely
replaced the old one.

But the old client library and the new daemon did not know how to talk fo each
other, so even though applications would not crash because of a missing library or
missing symbols, they were not able to store or obtain passwords from the keyring. That
is also what would happen in case a D-Bus service changes its interface.,

In case something like this happens it is possible to work around the issue by adding
code to the daemon to keep supporting the old protocol/interface, but this increases
the maintenance burden and the cost/benefits ratio needs to be properly assessed,
since it may be significant.

Similarly, the GIR interface for a library forms part of its public API. The GIR interface is
a high-level, language-agnostic APl which maps directly to the C API, and can be
used by multiple language bindings to automatically allow the library to be used from
those languages. Its stability depends on the stability of the underlying C library, plus
the stability of the GIR generation, implemented by g-ir-scanner.

3.5.5 THE MOVE TO WAYLAND

Moving to Wayland is a fairly big change, but the impact on application
compatibility may not be that big. If applications are using only standard Clutter and
Mx APIs (or higher level APIs built on top of them) they would just work. If the
application relies on something related to X, though, and uses any of the Clutter X11
functions, then that will require that they be ported.

That is a good reason for making those APIs part of the unsupported set, and if
necessary provide APIs as part of the higher level toolkit to accommodate
application needs. Wayland will allow an X server to be run and paint to one of its
windows, so extreme cases could be handled by using that feature, but relying on it
May prove unwise.

3.5.6 THE GTK+ AND CLUTTER MERGER

There has been discussion among GNOME developers recently about merging Clutter
and GTK+ into a single toolkit. GTK+ is a powerful toolkit with many years of experience
built in, and solving many of the problems posed by complex Uls, but it lacks the eye
candy and some of the features people now expect in a modern toolkit. Clutter on
the other hand has all of the eye candy and features one expects from a modern
toolkit, but lacks the toolkit part. While Mx and St, the GNOME Shell's toolkit, do
provide some widgets and higher level features, they are not nearly as fully featured
and mature as GTK+. The existence of so many toolkits is being seen as fragmentation
of the developer story in the GNOME platform, which also plays a role in these
discussions.

When the merger of Clutter and GTK+ happens , the impact and solutions would be
pretty much the same as if Clutter and Mx break ABI. Old libraries and applications
using Clutter and Mx would remain working, but care would have 1o be exercised in

making sure No process ends up using the two versions at the same time. It would also
lead the project to making a decision on whether to rebase the higher level widgets
on the new GTK+ 4 (as the merged library is called in discussions) or not.

According to the maintainers, Mx is still in use by Intel in some of their applications and
will be used for the netbook Ul in Tizen, so its medium-term future appears to be fairly

certain at this point.

4 APl SUPPORT LEVELS

A number of API support levels has been indicated recognizing that some bits of
the platform are more prone to change than others, and given the strategy of
building higher level custom APIs. The custom and enabling APIs make up what is
often called the SDK APIs. They are the ones with better promises, and for which
Collabora will try to provide smooth upgrade paths when changes come about,
while the APIs on the lower levels will not get as much work, and application
developers will be made aware that using them means the app might need to be
updated for a platform upgrade.

The overall strategy being considered right now to assign APIs to each of these
support levels is to start with the minimum set of libraries required to run the
Apertis system being part of the image with all libraries assigned to the Internal
APIs support level, and gradually promote them as development progresses and
decisions are made. The following sections describe the support levels.

Application
!

—

/

spk Custom
APIS APls Enablmg;lnternal 0S

~ Stable Best effort

B API life cycle tightly controlled by Bosch

p——
e

Fairly stable, strategies adopted to lessen API/ABI breakage impact

No guarantees, may need changes for each release

Illustration A:API levels and their expected stability

4.1 CUSTOM APIS

The Custom APIs are high level APIs built on top of the middleware provided by
Collabora. These APIs do not expose objects, types or data from the underlying
libraries, thus providing easier and abstract ways of working with the system.

Examples of such APIs are the share functionality, and a number of Ul
components that have been designed and built for the platform. Collabora has
had only limited information about these components, so an assessment of how
effectively they shield store applications from lower support level libraries is
currently not possible.

For these components to deliver on their promise of abstracting the lower level
APlIs it is imperative that they expose no objects, data types, functions and so on

from other libraries to the application developer. Collabora will be ready to assist
on defining and refining the Custom APIs to cover basic needs for applications.

4.2 ENABLING APIS

These APIs are not guaranteed to be stable between platform upgrades, but work
may be done on a case-by-case basis to provide a smooth migration path, with old
versions coexisting with newer ones when possible. Most existing open source
APIs related to core functionality fall in this support level: Mx, clutter, clutter-gst,
GStreamer, and so on.

As discussed in section 3.5.1, The GTK+ upgrade and a Clutter API break, there
are ways to deal with ABI/API breakage in these libraries. Keeping both versions
installed for a while is one of them. In the short term there will be at least one set
of API changes that will have a big impact on the Apertis project: Clutter 2.0%. That
new version of clutter is one of the steps in preparation for a future merge of
GTK+ and Clutter.

It is possible that this new version of Clutter is released while the Apertis project is
still not far enough in development that a switch can be made. However, in case
that is not possible, a plan will need to be laid out to properly migrate to this new
version in a future release. Being based on Clutter, the main SDK APIs that relate
to Ul will need to be ported, of course. Components that are based on Clutter such
as clutter-gst will need to be updated too. lllustration B shows how an application
process could end up in this situation.

This would lead to the kind of problems discussed in section 3.5.2, When a core
library breaks for applications that use clutter both directly and indirectly through
another library that uses clutter under the hood, for instance. An application that
uses both SDK Ul APIs and an earlier version of clutter would have to be updated.
An application which relies solely on Clutter would still work fine by just having
the old version of clutter around. The same would apply to an application which
relies solely on the SDK Ul APIs, of course.

4 http://wiki.clutter-project.org/wiki/ClutterChanges:2.0

http://wiki.clutter-project.org/wiki/ClutterChanges:2.0

Application
S AN
Clutter 1.10 Clutter-GST

Clutter 1.8

lllustration B: Example of how a process may end up linking two
incompatible versions of Clutter ABI-wise

4.3 OS APIS

The OS APIs include low level libraries such as glib and its siblings gio, gdbus, as
well as system services such as PulseAudio, glibc and the kernel. Applications
reaching down to these components would, as is the case for enabling APIs, not
necessarily work without changes after a platform upgrade.

4.4 INTERNAL APIS

These are APIs used to build the Apertis system itself but not exposed to store
applications. A library might get assigned to this support level if it is required to
implement system features, but its APl is too unstable to expose to from-store
applications. Some libraries that fit this support level might also be in the External
APIs one.

4.5 EXTERNAL APIS

Some libraries are not core enough that they warrant being shipped along with
the main system or are not very stable API-wise. One such example is poppler,
which changes APl and ABI fairly often and is not really required for most
applications - it will certainly be used on the main PDF viewing application, and
most other applications will simply yield to the system viewer when faced with a
PDF file.

That means poppler is a good candidate for bundling with the applications that
need it instead of being part of the core supported APIs.

4.6DIFFERING STABILITY LEVELS

While the Enabling, Custom, External, Internal and OS categories separate APIs
based on the level of control and direct involvement we have over them, a
separate dimension is needed to track the stability of APIs, with four levels:
private, unstable, stable, and deprecated. An API starts as private, and can
transition to any of the other levels. Transitions between stable and deprecated
are possible, but an API can never change or go back to being unstable or private
once it is stable — this is one of the stability guarantees.

It may be possible to move a library from the unstable level to the stable level
piecewise, for example by initially exposing a limited set of core functions as
stable, while marking the rest of the API as 'currently unstable'. Old API could later
be marked as deprecated. Further, it may be desirable to expose the same API at
different levels for different languages. For example, a library might be stable for
the C language, but unstable when used from JavaScript, pending further testing
and documentation work to mark it as stable.

This approach allows a phased introduction of stable APIs, giving sufficient time
for them to be thoroughly reviewed and tested before committing to their stability.

This could be implemented in the GIR files for an API, with annotations extracted
from the gtk-doc comments of the API's C source code — gtk-doc currently
supports a 'Stability' annotation. As an XML format, GIR is extensible, and custom
attributes could be used to annotate each function and type in an API with its
stability, extracted from the gtk-doc comments. Separate documentation manuals
could then be generated for the different stability levels, by making small
modifications to the documentation generation utilities in gtk-doc.

Restricting less stable or deprecated parts of an APl from being used by an app
written in C is technically complex, and would likely involve compiling two
versions of each library. It is suggested that less stable functions and types are
always exposed, with the understanding that app developers use them at their
own risk of having to keep up with APl-incompatible changes between Apertis
versions. Their existence would not be obvious, as they would not be included in
the documentation for the stable API.

By contrast, restricting the use of such APIs from high-level languages is simpler:
as all language bindings use GIR, only the GIR files and the infrastructure which
handles them needs modifying to support varying the visibility of APIs according
to their stability level. The bindings infrastructure already supports 'skipping'
specific APIs, but this is not currently hooked up to their advertised stability. A
small amount of work would be needed to enable that.

4.7MAINTAINING APl STABILITY

It is easy to accidentally break API or ABI stability between releases of a library,
and once a release has been made with an API break, that break cannot be
undone.

The Debian project has some tooling to detect APl and ABI changes between
releases of a library, though this is invoked at packaging time, which is after the

library has been officially released and hence after the damage is done.

This tooling could be leveraged to perform the ABI checks before making a library
release.

While such tools exist for C APIs, no equivalents exist for GIR and D-Bus APIs; the
stability of these must currently be checked manually for each release. As both
APIls are described using XML formats, developing tools for checking stability of
such APIs would not be difficult, and may be a prudent investment.

5 COMPONENTS

To illustrate how the platform APIs relate to Apertis-specific APIs, we are
reproducing here a diagram taken from the Apertis SDK documentation. The
components listed in Table 1: List of components below belong to the orange and
green boxes:

Applications

e 0 B R e

MRS Application Framework Linux Application Libraries

Application” Widgets = Services & Visual Internet Media Comms Data
Manager Utilities Services Services Services Services Mgmt
Services

Linux Core Libraries

Meego Kernel

The following table has a list of libraries that are likely to be on Apertis images or fit into
one of the supported levels discussed before. The table has links to documentation
and comments on API/ABI stability promises made by each project for reference. As
discussed before, fitting components info one of the supported levels will be an
iterative process throughout development, so this table should not be seen as a
canonical list of supported APIs.

API/ABI
API reference Stability

Guarantees

Aims to provide
backwards
compatibility

Ubuntu uses
EGLIBC

http://www.gnu.org/software/libc/manual/html_node/index.html
http://www.gnu.org/software/libc/manual/html_node/index.html

OpenGL ES

APl reference

Provided by
Freescale

Provided by
Freescale

API/ABI

Stability

Guarantees
The standard is
stable and the
implementation
should be as well
The standard is
stable and the
implementation
should be as well

Latest
documentation
currently; 1.10
has yet to be
released.

Gnome Platform
API/ABI Rules
Stability
guaranteed in
stable series

Gnome Platform
API/ABI Rules

Gnome Platform
API/ABI Rules

GStreamer

Latest
documentation
currently; 1.10
has yet to be
released.

See warning
below

Gnome Platform
API/ABI Rules

Stability
guaranteed in
stable series
Stability
guaranteed in
stable series

Clutter-GStreamer

Stability
guaranteed in
stable series

GeoClue

LibXML?2

libsoup

(includes some
example code)

No guarantees

Gnome Platform
API/ABI Rules

Stability
guaranteed in
stable series

http://developer.gnome.org/libsoup/unstable/
http://developer.gnome.org/libsoup/unstable/
http://xmlsoft.org/tutorial/index.html
http://xmlsoft.org/html/index.html
http://www.freedesktop.org/wiki/Software/GeoClue
http://www.freedesktop.org/wiki/Software/GeoClue
http://docs.clutter-project.org/docs/clutter-gst/stable/
http://docs.clutter-project.org/docs/clutter-gst/stable/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/
http://docs.clutter-project.org/docs/mx/stable/
http://docs.clutter-project.org/docs/mx/stable/
http://docs.clutter-project.org/docs/clutter/unstable/
http://docs.clutter-project.org/docs/clutter/unstable/
http://docs.clutter-project.org/docs/cogl/unstable/
http://docs.clutter-project.org/docs/cogl/unstable/
http://developer.gnome.org/pango/stable/
http://developer.gnome.org/pango/stable/
http://cairographics.org/samples/
http://cairographics.org/tutorial/
http://cairographics.org/documentation/
http://cairographics.org/documentation/
http://developer.gnome.org/glib/2.31/
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf
http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/opengles/sdk/docs/man/

APl reference

API/ABI

Stability

Guarantees
Stability
guaranteed in
stable series

libchamplain

Follows Clutter
version
numbering and
API/ABI stability
plan

Telepathy-GLib

There's some
inlined

documentation

but it doesn't
seem to be
generated and
published
online

No ABI
compatibility
guarantees. Still
need to find about
the API

No guarantees

Stability
guaranteed in
stable series

Telepathy-Logger

Stability
guaranteed in
stable series

PulseAudio

Stable in the
stable series for a
fixed set of
gobject-
introspection and
Vala releases

The API/ABI
hasn't been
broken in years,
but might break at
some point for
cleaning up

Stability
guaranteed in
stable series

http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc
http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc
http://pulseaudio.org/wiki/WritingVolumeControlUIs
http://pulseaudio.org/wiki/WritingVolumeControlUIs
http://pulseaudio.org/wiki/WritingVolumeControlUIs
http://freedesktop.org/software/pulseaudio/doxygen/
http://freedesktop.org/software/pulseaudio/doxygen/
http://telepathy.freedesktop.org/doc/folks/c/
http://telepathy.freedesktop.org/doc/folks/c/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD
http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD
http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD
http://developer.gnome.org/libchamplain/unstable/
http://developer.gnome.org/libchamplain/unstable/
http://developer.gnome.org/libsoup/unstable/
http://developer.gnome.org/libsoup/unstable/

API/ABI
API reference Stability
Guarantees

there is
minimal inline
API
libstartup-notification|0.12 See Notes docgmentat'lon No guarantees
but it doesn't
seem to be
published
online as
rendered

HTML

libecal Stability
(Evolution Data . guaranteed in
Server) stable series

SyncEvolution No guarantees

No guarantees

Stability
guaranteed in
stable series

There is minimal inline API

. No guarantees
documentation &

libsocialweb GLib-based API has no documentation No guarantees

0.1 is intended to
be stable, 0.2 will

API docs in sources start soon and
will be unstable
for a while

No guarantees at
present, but has
gotten more
stable recently

No stable releases
yet
No formal

libexif guarantees, but
it's very stable

WebKit-Clutter

TagLib

Table 1: List of components

http://developer.kde.org/~wheeler/taglib/api/index.html
http://developer.kde.org/~wheeler/taglib/api/index.html
http://developer.kde.org/~wheeler/taglib/api/index.html
http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc
http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc
http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc
http://developer.gnome.org/gdata/unstable/
http://developer.gnome.org/gdata/unstable/
http://gupnp.org/docs
http://api.syncevolution.org/
http://developer.gnome.org/libecal/3.3/
http://cgit.freedesktop.org/startup-notification/plain/doc/startup-notification.txt?id=STARTUP_NOTIFICATION_0_12;
http://cgit.freedesktop.org/startup-notification/plain/doc/startup-notification.txt?id=STARTUP_NOTIFICATION_0_12;
http://cgit.freedesktop.org/startup-notification/plain/doc/startup-notification.txt?id=STARTUP_NOTIFICATION_0_12;

6 CONCLUSION

Open Source has been chosen in order 1o be able to reuse code that is freely
available and for its customization potential. It is also desired to keep the platform up-
tfo-date with fresh new open source releases as they come about. While choosing to
leverage Open Source software does lower cost and the required investment
significantly, it does bring with it some challenges when compared to building
everything and controlling the whole platform, especially when it comes to the
fension between stability and novelty.

Those challenges will have to be met and worked upon on a case-by-case basis, and
frade-offs will have to be made. Like other distributors of open source soffware have
done over the years, delaying adoption of a partficular technology or newer versions
of a core package goes a long way in ensuring platform stability and providing safe
and manageable upgrade paths, so it is certainly an option that must be considered.
Other solutions should of course be considered and planned for, including shipping
more versions of the same library in parallel. Limiting the API that is considered
supported and requiring that some libraries be statically linked or be shipped along
with the program are also tools that should be used where necessary.

	Document Change Log
	1 Introduction
	2 New releases and API stability
	3 API and ABI stability strategies
	3.1 The Android approach
	3.2 The iOS approach
	3.3 The ApERTIS/OpenSource approach
	3.4 The role of limiting the supported API surface
	3.5 How would incompatible changes impact the product and how to handle them?
	3.5.1 The GTK+ upgrade and a Clutter API break
	3.5.2 When a core library breaks
	3.5.3 When a “leaf” library breaks ABI
	3.5.4 ABI is not just library symbols
	3.5.5 The move to Wayland
	3.5.6 The GTK+ and Clutter merger

	4 API Support levels
	4.1 Custom APIs
	4.2 Enabling APIs
	4.3 OS APIs
	4.4 Internal APIs
	4.5 External APIs
	4.6 Differing stability levels
	4.7 Maintaining API stability

	5 Components
	6 Conclusion

