
Apertis
Internationalizati

on Design

Author: Tomeu Vizoso
Contributors: Travis Reitter, Mateu Batle, Sjoerd Simons
Version: 1.2
Status: Final
Date: 17 November 2015
Last Reviewer: Luis Araujo

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

1.2 2015-11-17 • Updated to new name Apertis
• Removed file custom properties (metadata)

1.1 2014-12-11 • Update to new template

1.0 2013-03-04 • Make it final

0.3.1 2012-06-08 • Explain why IBus is recommended over other IMFs

0.3.0 2012-05-22 • Bump minor version number

0.2.1 2012-05-10 • Clarify our recommendation for the on-screen keyboard
• Explain further how IDs vs. natural language strings

doesn't affect much the workflow nor the tools used
• Explain how IDs or natural language strings may affect

consistency
• Explain a bit more how msgmerge works
• Explain further how to use csv2po
• Explain the process for changing translation metadata
• Use styles instead of specifying all metadata attributes

for each string
• Mention how printf placeholders affect the string width

calculation
• Remove mention to storing the metadata in the source

code
• Update sizes of default Japanese font packages
• Mention differences between Transifex editions

0.2.0 2012-03-19 Further explain the advantages of using input methods,
recommend using unique IDs for translations, mention
intltool, explain how msgmerge works, add section about
Transifex, add data to help estimate the space that will be
taken by the language support, expand the section on
runtime switching of locale.

0.1.3 2012-02-29 Several grammar improvements

0.1.2 2012-02-16 Clarify what Collabora will do, lots of style improvements,
add code example for language switching, add an
explanation of the GNOME work-flow

0.1.1 2012-02-29 Miscellaneous style improvements

0.1.0 2012-02-15 Initial revision

Table of Contents
Document Change Log...2
1 Introduction...5
2 Internationalization...6

2.1 Text input...6
2.2 Text display..7

2.2.1 Message IDs..8
2.2.2 Consistency...10

2.3 UI layout...10
3 Localization...12

3.1 Translation..12
3.1.1 GNU gettext...12
3.1.2 Translation management...13
3.1.3 Transifex..14

Deployment options..14
Maintenance...15
Translation memory..15
Glossary..15
POT merging...15
Automatic length check..15

3.2 Testing..16
3.3 Other locale configuration..17

4 Distribution...18
5 Runtime switching of locale..20

5.1 Common pattern..20
5.2 Application helper API..21

6 Localization in GNOME..23

Index of Tables
Table 1: Various packages related to localization and their sizes...........................19
Table 2: Packages in Ubuntu that are brought by language-support-fonts-ja........19

Index of Illustrations
Illustration A: Workflow suggestion..9
Illustration B: GTK+ application running in Arabic...11
Illustration C: GNU gettext workflow..12
Illustration D: Sequence diagram for switching locale...20
Illustration E: GNOME Translation Project workflow..24

Index of Code Listings
Listing 1: Entry in a PO file...7
Listing 2: Translatable strings in clutter-script...8
Listing 3: Contents of metadata file...9
Listing 4: Contents of a PO file for the en_GB locale with the metadata merged in

...10
Listing 5: Reacting to language switches...21

1 INTRODUCTION
This design explains how the Apertis platform will be made localizable and how it
will be localized to specific locales.
“Internationalization” (“i18n”) is the term used for the process of ensuring that a
software component can be localized. “Localization” (“l10n”) is the process of
adding the necessary data and configuration so an internationalized software
adapts to a specific locale. A locale is the definition of the subset of a user's
environment that depends on language and cultural conventions.
All this will be done with the same tools used by GNOME and we do not anticipate
any new development in the middleware itself, though UI components in the
Apertis shell and applications will have to be developed with internationalization in
mind, as explained in this document.
For more detailed information of how translation is done in the FOSS world, a good
book on the subject is available1.

1 http://en.flossmanuals.net/open-translation-tools/

http://en.flossmanuals.net/open-translation-tools/

2 INTERNATIONALIZATION

2.1 TEXT INPUT

Some writing systems will require special software support for entering text, the
component that provides this support for an specific writing system is called input
method. There is a framework for input methods called IBus2 that is the most
common way of providing input methods for the different writing systems. Several
input methods based on IBus are available in Ubuntu, and it is very unlikely that
any needs will not be covered by them. An older, but more broadly-supported,
input method framework is SCIM3 and an even older one is XIM4.

The advantage of using an input method framework (instead of adding the
functionality directly to applications or widget libraries) is that the input method
will be usable in all the toolkits that have support for that input method
framework.

Note that currently there is almost no support in Clutter for using input methods.
Lead Clutter developer Emmanuele Bassi recommends doing something similar to
GNOME Shell, which uses GtkIMContext5 on top of ClutterText6, which would imply
depending on GTK+. There's a project called clutter-imcontext that provides a
simple version of GtkIMContext for use in Clutter applications, but Emmanuele
strongly discourages its use. GTK+ and Qt support XIM, SCIM and IBus.

In order to add support for GtkIMContext to ClutterText, please see how it's done
in GNOME Shell7. As can be seen this implementation calls the following functions
from the GtkIMContext API8:

• gtk_im_context_set_cursor_location

• gtk_im_context_reset

• gtk_im_context_set_client_window

• gtk_im_context_filter_keypress

• gtk_im_context_focus_in

• gtk_im_context_focus_out

Between the code linked above and the GTK+ API reference it should be
reasonably clear how to add GtkIMContext support to Clutter applications, but
there's also the possibility of reusing that code instead of having to rewrite it. In
that case, we advise to take into account the license of the file in question (LGPL
v2.1).

For systems without a physical keyboard, text can be entered via a virtual

2 http://en.wikipedia.org/wiki/Intelligent_Input_Bus
3 http://en.wikipedia.org/wiki/Smart_Common_Input_Method
4 http://www.x.org/releases/X11R7.6/doc/libX11/specs/XIM/xim.html
5 http://developer.gnome.org/gtk/unstable/GtkIMContext.html#GtkIMContext.description
6 http://developer.gnome.org/st/3.3/StEntry.html
7 http://git.gnome.org/browse/gnome-shell/tree/src/st/st-im-text.c
8 http://developer.gnome.org/gtk3/unstable/GtkIMContext.html

http://developer.gnome.org/gtk3/unstable/GtkIMContext.html
http://git.gnome.org/browse/gnome-shell/tree/src/st/st-im-text.c
http://developer.gnome.org/st/3.3/StEntry.html
http://developer.gnome.org/gtk/unstable/GtkIMContext.html#GtkIMContext.description
http://www.x.org/releases/X11R7.6/doc/libX11/specs/XIM/xim.html
http://en.wikipedia.org/wiki/Smart_Common_Input_Method
http://en.wikipedia.org/wiki/Intelligent_Input_Bus

keyboard. The UI toolkit will invoke the on-screen keyboard when editing starts,
and will receive the entered text once it has finished. So the on-screen keyboard
can be used for text input by a wide variety of UI toolkits, Collabora recommends
it to use IBus.

The reasons for recommending to use an input-method framework is that most
toolkits have support for it, so if an application is reused that uses Qt, the on-
screen keyboard will be used without any specific modification, which wouldn't be
the case if GtkIMContext would be used.

About why to use IBus over other input-method frameworks, the reason is that
IBus is already supported by most modern toolkits, has a very active upstream
community and the cost of developing input-methods with IBus is lower than with
other frameworks. Currently, IBus is the default input method framework in
Ubuntu and Fedora, and GNOME is considering dropping support for other
frameworks input-method.

2.2 TEXT DISPLAY

For text layout and rendering the toolkit needs to support all writing systems we
are interested in. GTK+ and Clutter use Pango which supports a very broad set of
natural language scripts. The appropriate fonts need to be present so Pango can
render text.

The recommended mechanism for translating those pieces of text that are
displayed in the UI is to export those strings to a file, get them translated in
additional files and then have the application use at runtime the appropriate
translated strings depending on the current locale. GNU gettext implements this
scheme and is very common in the FOSS world. Gettext also allows adding a
comment to the string to be translated, so it gives more context that can aid the
translator to understand better how the string is used in the UI. This additional
context can also be used to encode additional information as explained later. The
GNU gettext manual is comprehensive and covers all this in detail9.

This is an example of all the metadata that a translated string can have attached:

 #. Make sure you use the IEC equivalent for your language
 # Have never seen KiB used in our language, so we'll use KB
 #: ../glib/gfileutils.c:2007
 #, fuzzy, c-format
 msgctxt "File properties dialog"
 msgid "%.1f KiB"
 msgstr "%.1f KB"

Listing 1: Entry in a PO file

For strings embedded inside ClutterScript files, Collabora will modify intltool10 to
understand the ClutterScript format, and add a "translatable" property to
ClutterLabel, so labels in a ClutterScript file appear as follows:

9 http://www.gnu.org/software/gettext/manual/gettext.html
10https://launchpad.net/intltool/

https://launchpad.net/intltool/
http://www.gnu.org/software/gettext/manual/gettext.html

"label" : {
 "translatable" : true,
 "text" : "foo"
}

Listing 2: Translatable strings in clutter-script

Intltool is a collection of scripts that extract translatable strings from several file
formats into PO files.

2.2.1 MESSAGE IDS

It is most common in FOSS projects (specially those using GNU gettext) to use the
English translation as the identifier for the occurrence of a piece of text that needs
to be translated, though some projects use an identifier that can be numeric
(T54237) or a mnemonic (PARK_ASSIST_1). The IDs will not leak to the UI if the
translations are complete, and there is also the possibility of defining a fallback
language.

There's two main arguments used in favor of using something other than plain
English as the ID:

• so that when the English translation is changed in a trivial way, that
message isn't marked as needing review for all other languages;

• and to avoid ambiguities, as “Stop” may refer to an action or a state and
thus may be translated differently in some languages, while using the IDs
“state_stop” and “action_stop” would remove that ambiguity.

When using gettext, the first argument loses some strength as it includes a tool
that is able to merge the new translatable string with the existing translations, but
marking them as in need of review. About the argument of avoiding ambiguity,
GNU gettext was extended to provide a way of attaching additional context to a
message so that is not a problem anymore.

Regarding advantages of using plain English (or other natural language) as the
message ID:

• better readability of the code,

• when the developers add new messages to the application and run it,
they will see the English strings which is closer to what the user will see
than any other kind of IDs.

From the above it can be understood why it's normally recommended to just use
the English translation as the placeholder in the source code when using GNU
gettext.

Regarding consistency, there's a slight advantage in using natural language
strings because when entering translations the translation software may offer
suggestions from the translation memory and given that the mnemonic IDs are
likely to be unique, there will be less exact matches.

Because of the need to associate to each translation metadata such as the font
size and the available space, plus having product variants that share most of the
code but can have differences in fonts and widget sizes, we recommend to use
mnemonics as IDs, which would allow us to keep a list of the translatable strings
and their associated fonts and pixels for each variant. This will be further
discussed in section 3.2.

This diagram illustrates the workflow that would be followed during localization.

Illustration A: Workflow suggestion

For better readability of the source code we recommend that the IDs chosen
suggest the meaning of the string, such as PARK_ASSIST_1. Instead of having to
specify whole font descriptions for each string to translate, Collabora recommends
to use styles that expand to specific font descriptions.

Here is an example of such a metadata file, note the font styles NORMAL, TITLE
and APPLICATION_LIST:

...
PARK_ASSIST_1 NORMAL 120px
PARK_ASSIST_2 NORMAL 210px
SETTINGS_1 TITLE 445px
BROWSER APPLICATION_LIST 120px
...

Listing 3: Contents of metadata file

And here is the PO file that would result after merging the metadata in, ready to
be uploaded to Transifex:

...
#. NORMAL,120px
#: ../preferences.c:102
msgid "PARK_ASSIST_1"
msgstr "Park assist"

#. NORMAL,210px
#: ../preferences.c:104
msgid "PARK_ASSIST_2"
msgstr "Park assist"

...

Listing 4: Contents of a PO file for the en_GB locale with the metadata merged in

If for some reason some source code is reused that uses English for its translation
IDs and the rest of the application or library uses synthetic IDs, Collabora
recommends to have a separate domain for each section of the code, so all
English IDs are in their own PO file and the synthetic IDs in their own. In this case,
note that matching metadata to individual strings can be problematic if the
metadata isn't updated when the string IDs change. It will be a problem as well if
there are several occurrences of exactly the same string.

When it is needed to modify the metadata related to existing strings, the process
consists of modifying the file containing string metadata, then merging it again
with the PO files from the source code and importing it into the translation
management system.

2.2.2 CONSISTENCY

Translation management systems offer tools to increase the consistency of the
translations, so the same words are used to explain the same concept. One of the
tools that Transifex offers is a search feature that allows to quickly check how a
word has been translated in other instances. Another is the translation memory
feature, which suggests translations based on what has been translated already.

There isn't any relevant difference in how these tools work and whether the
strings are identified by synthetic IDs or by their English translations.

2.3 UI LAYOUT

Some languages are written in orientations other than left to right and users will
expect that the UI layout takes this into account. This means that some horizontal
containers will have to layout its children in reverse order, labels linked to a
widget will also be mirrored, and some images used in icons will have to be
mirrored horizontally as well.

Here is an example11 of an application running under a locale whose orientation is
right-to-left, note the alignment of icons in the toolbar and the position of the
arrows in submenus:

11http://www.ibm.com/developerworks/aix/library/au-internatlgtk/#figure1

http://www.ibm.com/developerworks/aix/library/au-internatlgtk/#figure1

Illustration B: GTK+ application running in Arabic

3 LOCALIZATION

3.1 TRANSLATION

3.1.1 GNU GETTEXT

Most of the work happens in the translation phase, in which .po files are edited so
they contain appropriate translations for each string in the project. As illustrated
in the diagram below, the .po files generated from the original .pot file serve as
the basis for starting the translation. When the source code changes and thus a
different .pot file gets generated, GNU gettext includes a tool for merging the new
.pot file into the existing .po files so translators can work on the latest code.

This diagram illustrates the workflow when using GNU gettext to translate text in
an application written in C12:

Illustration C: GNU gettext workflow

From time to time, it is needed to extract new translatable strings from the source
code and update the files that are used by translators. The extraction itself is
performed by the tool xgettext13, which generates a new POT file containing all
the translatable strings plus their locations in the source code and any additional
context.

These are the programming languages supported by GNU gettext14: C, C++,
ObjectiveC, PO, Python, Lisp, EmacsLisp, librep, Scheme, Smalltalk, Java,

12http://upload.wikimedia.org/wikipedia/commons/0/05/GNU_gettext_process.png
13http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-

Invocation.html
14http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-

Invocation.html#index-supported-languages_002c-_0040code_007bxgettext_007d-174

http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-Invocation.html#index-supported-languages_002c-_0040code_007bxgettext_007d-174
http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-Invocation.html#index-supported-languages_002c-_0040code_007bxgettext_007d-174
http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-Invocation.html
http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/xgettext-Invocation.html
http://upload.wikimedia.org/wikipedia/commons/0/05/GNU_gettext_process.png

JavaProperties, C#, awk, YCP, Tcl, Perl, PHP, GCC-source, NXStringTable, RST and
Glade.

The POT file and each PO file are fed to msgmerge15 which merges the existing
translations for that language into the POT file. Strings that haven't been changed
in the source code get automatically merged and the remaining are passed
through a fuzzy algorithm that tries to find the corresponding translatable string.
Those strings that had a fuzzy match are marked as needing review. If strings are
indexed with unique IDs instead of the English translation, then it's recommended
to use the --no-fuzzy-matching option to msgmerge, so new IDs will be always
empty. Otherwise, if the POT file contained already an entry for PARK_ASSIST_1
and PARK_ASSIST_2 was added, when merging into existing translations, the
existing translation would be reused, but marking the entry as fuzzy (which would
cause Transifex to use that translation as a suggestion).

3.1.2 TRANSLATION MANAGEMENT

Though these file generation steps can be executed manually with command line
tools and translators can work directly on the .po files with any text editor, there
are more high-level tools that aim to manage the whole translation process. Next
we briefly mention the ones most commonly used in FOSS projects.

Pootle16, Transifex17 and Launchpad Rosetta18 are tools which provide convenient
UIs for translating strings. They also streamline the process of translating strings
from new .pot versions and offer ways to transfer the resulting .po files to source
code repositories.

Pootle is the oldest web-based translation management system and is mature but
a bit lacking in features. Maintaining an instance requires a fair amount of
experience.

Transifex is newer and was created to accommodate better than Pootle to the
actual workflows of most projects today. Its UI is richer in features that facilitate
translation and, more importantly, has good commercial support (by Indifex19). It
provides as well an API that can be used to integrate it with other systems. See
3.1.3 for more details.

Launchpad is not easily deployable outside launchpad.net and is very oriented to
Ubuntu's workflow, so we do not recommend its usage.

Both Pootle and Transifex have support for translation memory, which aids in
keeping the translation consistent by suggesting new translations based on older
ones.

If for some reason translators prefer to use a spreadsheet instead of web UIs or
manually editing the PO files, csv2po20 will convert a PO file to a spreadsheet and

15http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/msgmerge-
Invocation.html

16http://translate.sourceforge.net/wiki/pootle/index
17https://www.transifex.net/
18https://translations.launchpad.net/
19http://www.indifex.com/
20http://translate.sourceforge.net/wiki/toolkit/csv2po

http://translate.sourceforge.net/wiki/toolkit/csv2po
http://www.indifex.com/
https://translations.launchpad.net/
https://www.transifex.net/
http://translate.sourceforge.net/wiki/pootle/index
http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/msgmerge-Invocation.html
http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/msgmerge-Invocation.html

will convert it back so the translation system can be refreshed with the new
translations.

po2csv will convert a PO file to a CSV one which has a column for the comments
and context, another for the msgid and one more for the translation for the given
language. csv2po will do the opposite conversion.

It's very likely that the CSV format that these tools generate and expect doesn't
match exactly what it is needed, so an additional step will be needed that
converts the CSV file to the spreadsheet format required, and a step that does the
opposite.

3.1.3 TRANSIFEX

In this section we discuss in more details some aspects of Transifex. For an
overview on other features of Transifex, please see the documentation for
management21 and translation22.

Deployment options

Transifex is available as a hosted web service in http://www.transifex.net and there
are several pricing options23 depending on the project size, features and level of
technical support desired.
The FOSS part of Transifex is available as Transifex Community Edition and can be
freely downloaded and installed in any machine with a minimally modern and
complete Python installation. This version lacks some of the features that are
available in http://transifex.net and in the Enterprise Edition. The installation manual
for the community edition is in http://help.transifex.net/server/install.html.
The hosted and the enterprise editions support these features in addition of what
the community edition supports:

• Translation memory
• Glossary
• Improved collaboration between translators
• Improved UI theme

The advantage of the hosted edition is that it is updated more frequently (weekly)
and that in the future it will be possible to order paid translations through the
platform.
Transifex currently cannot estimate the space that a given translation will take and
will need to be extended in this regard.
It also fully supports using synthetic translation IDs instead of English or other natural
language.
Finally, Indifex provides commercial support for the enterprise edition of Transifex,
which can either be self­hosted or provided as SaaS. Their portfolio includes
assistance with deployment, consultancy services on workflow and customization,
and a broad package of technical support24.

21http://help.transifex.net/intro/projects.html
22http://help.transifex.net/intro/translating.html
23https://www.transifex.net/plans/
24https://www.transifex.net/tour/products/transifexee/

https://www.transifex.net/tour/products/transifexee/
http://help.transifex.net/server/install.html
http://transifex.net/
http://www.transifex.net/
https://www.transifex.net/plans/
http://help.transifex.net/intro/translating.html
http://help.transifex.net/intro/projects.html

Maintenance

Most maintenance is performed through the web interface, by registered users of
the web service with the appropriate level of access. This includes setting up users,
teams, languages and projects. Less frequent tasks such as instance configuration,
software updates, performance tuning and set up of automatic jobs are performed
by the administrator of the server hosting the service.

Translation memory

Transifex will provide suggestions when translating a string based on existing
translations25 in the current module or in other modules that were configured to
share their translation memory26. This memory can also be used to pre­populate
translations for a new module based on other modules' translations27.

Glossary

Each project has a series of terms that are very important to translate consistently or
that can have several different possible translations with slightly different meanings.
To help with this, Transifex provides a glossary28 that will assist translators in these
cases.

POT merging

As explained in section 3.1.1, new translatable strings are extracted from the source
files with the tool xgettext and the resulting POT file is merged into each PO file with
the tool msgmerge.
Once the PO files have been updated, the tool tx (command­line transifex client)
can be used to submit the changes to the server, this merge happening as
follows29:

Here’s how differences between the old and new source files will be
handled:

• New strings will be added.

• Modified strings will be considered new ones and added as well.

• Strings which do not exist in the new source file (including ones which
have been modified) will be removed from the database, along with
their translations.

Keep in mind, however, that old translations are kept in the Translation
Memory of your project.

Note that this process can be automated.

25http://help.transifex.net/intro/translating.html#user-tm
26http://help.transifex.net/intro/projects.html#setting-up-translation-memory
27http://help.transifex.net/intro/projects.html#prepopulate-translations-with-100-matches-on-tm
28http://help.transifex.net/intro/translating.html#glossary
29http://help.transifex.net/features/client/index.html#push

http://help.transifex.net/features/client/index.html#push
http://help.transifex.net/intro/translating.html#glossary
http://help.transifex.net/intro/projects.html#prepopulate-translations-with-100-matches-on-tm
http://help.transifex.net/intro/projects.html#setting-up-translation-memory
http://help.transifex.net/intro/translating.html#user-tm

Automatic length check

Transifex's database model will have to be updated to store additional metadata
about each string such as the font description and the available size in pixels. The
web application could then check how many pixels the entered string would take
in the UI, using Pango and Fontconfig30. For better accuracy, the exact fonts that
will be used in the UI should be used for this computation.

Alternatively, there could be a extra step after each translation phase that would
spot all the strings that may overflow and mark them as needing review.

3.2 TESTING

Translations will be generally proof-read, but even then we recommend testing the
translations by running the application to catch a number of errors which are
noticeable only at run time. This run-time evaluation can spot confusing or
ambiguous wording, as well as layout problems.

Each translation of a single piece of text can potentially require a wildly-differing
width due to varying word and expression sizes in different languages. There are
ways for the UI to adapt to the different string sizes but there are limits to how
well this can work, so translators need often to manually check whether their
translation fits nicely in the UI.

One way to automatically avoid many instances of layout errors would be to have
available, during translation and along with the extracted strings, the available
space in pixels and the exact font description used to display the string. This
information would allow automatic calculation of string sizes, thus being able to
catch translations that would overflow the boundaries. As explained in 2.2.1, this
metadata would be stored in a file indexed by translation ID and would be merged
before importing it into the translation management software, which could use it
to warn when a translated string may be too long. For this to consistently work,
the translation IDs need to be unique (and thus synthetic).

When calculating the length of a translation for a string that contains one or more
printf placeholders31, the width that the string can require when displayed in the
UI grows very quickly. For example, for the placeholder %d which can display a
32-bit integer value, the final string can take up to 10 additional digits. The only
way to be safe is to assume that each placeholder can be expanded to its
maximum size, though in the case of strings (placeholder %s) that is practically
unlimited.

If, despite automatically warning the translator when a translation will not fit in
the UI, some strings are too long, the UI widget that displays the string could
ellipsize it to indicate that the displayed text isn't complete. If this occurred in a
debug build, a run-time warning could be also emitted. These warnings would be
logged only once a translated string has been displayed in the UI and wouldn't
apply to text coming from an external input.

For manual testing, an image could be provided to translators so they could easily

30http://fontconfig.org
31http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html

http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html
http://fontconfig.org/

merge their work and test the software in their locale.

3.3 OTHER LOCALE CONFIGURATION

There is some other configuration that is specific to a locale but that is not specific
to the application. This includes number, date and time formats, currency and
collation. Most locales are already present in GNU glibc so we would only have to
add a locale if it would target an extremely small population group.

4 DISTRIBUTION
There are three main ways of packaging translations:

• package all the MO files (compiled PO files) along the rest of the files for a
single component (for example gnome-shell in Ubuntu).

• package the MO files for a single component (usually a big one such as
LibreOffice or KDE) and a specific language in a separate package (for
example firefox-locale-de32 in Ubuntu).

• package several MO files corresponding to several components for one
language (for example language-pack-cs-base in Ubuntu).

Our recommendation at this stage is to have:

• each application along with all its existing translations in a single
package. This way the user will install e.g. navigation-
helper_1.10_armhf.deb and the user will be able to switch between all the
supported languages without having to install any additional packages.

• the rest of the MO files (those belonging to the UI that is pre-installed,
such as applications and the shell) would be packaged grouped by
language, e.g. apertis-core-de_2.15_armhf.deb. That way we can choose
which languages will be pre-installed and can allow the user to install
additional languages on demand.

If we do not want to pre-install all the required fonts and input methods for all
supported languages, we could have meta-packages that, once installed, provide
everything that is required to support a specific language. The meta-package in
Ubuntu that provides support for Japanese is a good example of this33.

Note that our current understanding is that the whole UI will be written, not
reusing any existing UI components that may be present in the images. This
implies that though some middleware components may install translations, those
are not expected to be seen by the user ever.

This table should help make an idea of the sizes taken by packages related to
localization:

32http://packages.ubuntu.com/oneiric/firefox-locale-de
33http://packages.ubuntu.com/hardy/language-support-ja

http://packages.ubuntu.com/hardy/language-support-ja
http://packages.ubuntu.com/oneiric/firefox-locale-de

Package name Contents
Package

size
Installed

size
language-pack-de-
base MO files for core packages34 2,497 kB 8,432 kB
firefox-locale-de German translation for Firefox35 233 kB 453 kB

libreoffice-l10n-de
Resource files with translations, and
templates36 1,498 kB 3,959 kB

language-support-
fonts-ja

Fonts for rendering Japanese 29,006 kB 41,728 kB

Ibus-anthy Japanese input method37 388 kB 1,496 kB

Table 1: Various packages related to localization and their sizes

The language-support-fonts-ja package is a virtual one that brings the following
other packages (making up the total of 41,728 kB when installed):

Package name Contents
Package

size
Installed

size

ttf-takao-gothic
Japanese TrueType font set, Takao Gothic
Fonts 8,194.6 kB

12,076.0
kB

ttf-takao-pgothic
Japanese TrueType font set, Takao P Gothic
Font 4,195.4 kB 6,196.0 kB

ttf-takao-mincho
Japanese TrueType font set, Takao Mincho
Fonts

16,617.9
kB

23,456.0
kB

Table 2: Packages in Ubuntu that are brought by language-support-fonts-ja

Modern distributions will bring all those fonts for Japanese-enabled installations,
but depending on the commercial requirements, a system could make with just a
subset. Similarly, other locales will require a set of fonts for properly rendering
text in the same way as users in specific markets expect. In order to recommend
specific font files, knowledge on the requirements are needed.

34http://packages.ubuntu.com/precise/all/language-pack-de-base/filelist
35http://packages.ubuntu.com/oneiric/all/firefox-locale-de/filelist
36http://packages.ubuntu.com/oneiric/all/libreoffice-l10n-de/filelist
37http://packages.ubuntu.com/precise/ibus-anthy/filelist

http://packages.ubuntu.com/precise/ibus-anthy/filelist
http://packages.ubuntu.com/oneiric/all/libreoffice-l10n-de/filelist
http://packages.ubuntu.com/oneiric/all/firefox-locale-de/filelist
http://packages.ubuntu.com/precise/all/language-pack-de-base/filelist

5 RUNTIME SWITCHING OF LOCALE

5.1 COMMON PATTERN

A usual way of implementing switching languages during runtime is to have those
UI components that depend on the language to listen for a signal that gets
emitted by a global singleton when the language changes. Those components will
check the new language and update strings and probably change layout if the text
direction has changed. Some other changes may be needed such as changing the
icons, colors, etc.

The Qt toolkit has a bit of support for this solution and their documentation
explains in detail how to implement it38. This can be easily implemented in Clutter
and performance should be good provided that there isn't an excessive amount of
actors in the stage.

Illustration D: Sequence diagram for switching locale

LocaleManager in the diagram would be a singleton that stores the current locale
and notifies interested parties when it changes. The current locale would be
changed by UI elements such as a combo-box in the settings panel, a menu
option, etc.

Other UI elements that take locale-dependent decisions (in the diagram,
SettingsWindow) would register to be notified when the locale changes, so they
can change their UI (update strings, change icons, change text orientation, etc.).

If the UI element that changes the current locale and the UI elements that have to
be updated don't reside in the same operating system process, LocaleManager
could be a D-Bus service whose API would include the capability to set and get the
current locale and be notified of changes.

These snippets show how such a solution could be implemented (for the single

38http://developer.qt.nokia.com/faq/answer/how_can_i_dynamically_switch_between_languages_in
_my_application_using_e.g_

http://developer.qt.nokia.com/faq/answer/how_can_i_dynamically_switch_between_languages_in_my_application_using_e.g_
http://developer.qt.nokia.com/faq/answer/how_can_i_dynamically_switch_between_languages_in_my_application_using_e.g_

process variant):

...
/* This code belongs to the UI for changing the language, for simplicity
we
 assume that there's a button for each language */
static gboolean
german_button_event_cb (ClutterActor *actor,
 ClutterEvent *event,
 gpointer user_data)
{
 ExampleSettingsManager *settings_manager = example_settings_manager_get
();
 example_settings_manager_set_language (settings_manager, "de");
}
...
/* This code belongs to UI that needs to change according to the language
*/
static void
example_bluetooth_settings_dialog_init (ExampleBluetoothSettingsDialog
*self)
{
 ExampleSettingsManager *settings_manager = example_settings_manager_get
();
 g_signal_connect (G_OBJECT (settings_manager), "language-changed",
 _language_changed_cb, self);
 _retranslate_ui (self);
}

static void
_language_changed_cb (ExampleSettingsManager *settings_manager,
 ExampleBluetoothSettingsDialog *self)
{
 _retranslate_ui (self);
}

static void
_retranslate_ui (ExampleBluetoothSettingsDialog *self)
{
 clutter_text_set_text (self->activated_label, _("Activated"));
 clutter_text_set_text (self->visibility_label, _("Visibility"));
}

Listing 5: Reacting to language switches

5.2 APPLICATION HELPER API

To reduce the amount of work that most application authors will have when
making their applications aware of runtime locale switches, we recommend that
the SDK API includes a subclass of ClutterText (let's call it for now ExampleText)
that reacts to locale changes.

ExampleText would accept a translatable ID via the function
example_text_set_text(), would display its translation based on the current locale
and would also listen for locale changes and update itself accordingly.

So xgettext can extract the string IDs that get passed to ExampleText, it would
have to be invoked with --flag=example_text_set_text:1:c-format.

If applications use ExampleText instead of ClutterText for the display of all their
translatable text, they will have to interface with LocaleManager only if they have
to localize other aspects such as icons or container orientation.

6 LOCALIZATION IN GNOME
GNOME uses a web application called Damned Lies to manage their translation
work-flow and produce statistics to monitor the translation progress. Damned Lies
is specifically intended to be used within GNOME, and its maintainers recommend
other parties to look into a more generic alternative such as Transifex. There used
to be a separate tool called Vertimus but it has been merged into Damned Lies.

Participants in the translation of GNOME belong to translation teams, one for each
language to which GNOME is translated, and they can have one of three roles:
translator, reviewer and committer. As explained in GNOME's wiki39:

Translators contains persons helping with GNOME translations into a specific
language, who added themselves to the translation team. Translators could
add comment to a specific PO file translation, could reserve it for
translations and could suggest new translations by upload a new PO file.
The suggested translations will be reviewed by other team members.

Reviewers are GNOME translators which were assigned by the team
coordinator to review newly suggested translations (by translators, reviews
or committers). They have access to all actions available to a translators
with the addition of some reviewing task (ex reserve a translation file for
proofreading, mark a translation as being ready to be included in GNOME).

Committers are people with rights to make changes to the GNOME
translations that will be release. Unless a translations is not committed by a
committer, it will only remain visible in the web interface, as an attached PO
file. Committers have access to all actions of a reviewer with the addition of
marking a PO file as committed and archiving a discussion for new
suggestions.

The GNOME work-flow is characterized by everybody being able to suggest
translations, by having a big body of people who can review those and by tightly
controlling who can actually commit to the repositories. The possibility of
reserving translations also minimize the chances of wasting time translating the
same strings twice.

A very popular tool in the GNOME community of translators is the tool Poedit40,
though the work-flow does not encourage a specific tool for the translations
themselves and GNOME translators do use several tools depending on their
personal preferences.

This graph illustrates their work-flow:

39https://live.gnome.org/TranslationProject/ContributeTranslations
40http://www.poedit.net/

http://www.poedit.net/
https://live.gnome.org/TranslationProject/ContributeTranslations

Illustration E: GNOME Translation Project workflow

	Document Change Log
	1 Introduction
	2 Internationalization
	2.1 Text input
	2.2 Text display
	2.2.1 Message IDs
	2.2.2 Consistency

	2.3 UI layout

	3 Localization
	3.1 Translation
	3.1.1 GNU gettext
	3.1.2 Translation management
	3.1.3 Transifex
	Deployment options
	Maintenance
	Translation memory
	Glossary
	POT merging
	Automatic length check

	3.2 Testing
	3.3 Other locale configuration

	4 Distribution
	5 Runtime switching of locale
	5.1 Common pattern
	5.2 Application helper API

	6 Localization in GNOME

