
Apertis

Multimedia

Design

Author: Edward Hervey
Contributors: Mateu Batle, Martin Barrett, Andre Magalhaes
Version: 0.3.2
Status: Final
Date: 17. November 2015
Last Reviewer: Luis Araujo

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.3.2 2015-11-16 • Updated to new name Apertis
• Removed file custom properties (metadata)

0.3.1 2014-12-15 • Updated to new template

0.3.0 2013-03-14 • Revamp

0.2.3 2012-09-26 • Add specification for Traffic control

0.2.2 2012-09-20 • Add specification for DVD playback
• Apply internal review suggestions
• Add note about the Camera and Video on Boot design

0.2.1 2012-09-17 • Add specification for Multimedia Framework QA

0.2.0 2012-09-13 • Remove mention of being able to support both camera
and video playback at the same time

• Remove mention to require 2 seconds from boot to
showing the camera

• Add specification for Camera Widget
• Add specification for Transcoding

0.1.4 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.1.3 2012-03-19 • Separate requirements from solutions and risks

0.1.2 2012-03-13 • Introduction on technologies used

0.1.0 2012-02-14 • Initial version

Table of Contents
Document Change Log...2
1 Introduction...4
2 Requirements..5

2.1 Hardware-accelerated media rendering...5
2.2 Multimedia Framework...5
2.3 Progressive download and buffered playback..5
2.4 Distributed playback support...6
2.5 Camera display on boot...6
2.6 Video playback on boot..6
2.7 Camera widget...6
2.8 Transcoding..6
2.9 DVD playback...6
2.10 Traffic control...7

3 Solutions...8
3.1 Multimedia Framework...8
3.2 Hardware-accelerated Media Rendering..8
3.3 Buffering playback in GStreamer and clutter-gst...9

3.3.1 Progressive buffering based on expected bandwidth..............................9
3.4 Distributed playback..10
3.5 Camera and Video display on boot...10
3.6 Camera widget and clutter-gst...11
3.7 Transcoding..12
3.8 DVD playback...12
3.9 Traffic control...12

Index of Illustrations
Illustration 1: Network traffic flow..14

1 INTRODUCTION
This document covers the various requirements for multimedia handling in the
Apertis platform.

The FreeScale I.MX/6 platform provides several IP blocks offering low-power and
hardware-accelerated features:

• GPU : For display and 3D transformation/processing

• VPU : For decoding and encoding video streams

The Apertis platform will provide robust and novel end-user features by getting
the most out of those hardware components. However, in order to retain power
efficiency, care must be taken in the way those components are exposed to
applications running on the platform.

The proposed solutions outlined in this document have also been chosen for the
Apertis platform to re-use as many “upstream” open-source solutions as possible,
to minimize the maintenance costs for future projects based upon Apertis.

2 REQUIREMENTS

2.1 HARDWARE-ACCELERATED MEDIA RENDERING

The Apertis system will need to make usage of the underlying GPU/VPU hardware
acceleration in various situations, mainly:

• Zero copy of data between the VPU decoding system and the GPU display
system

• Be usable in WebKit and with the Clutter toolkit

• Integration with FreeScale and ADIT technologies

2.2 MULTIMEDIA FRAMEWORK

In a system like Apertis, writing a wide array of applications and end-user features
offering multimedia capabilities requires a framework which will offer the following
features:

• Handle a wide variety of use-cases (playback, recording, communication,
network capabilities)

• Support multiple audio, video and container formats

• Capability to add new features without having to modify existing
applications

• Capability to handle hardware features with as little overhead as possible

• Widely adopted by a variety of libraries, applications and systems

In addition, this system needs to be able to handle the requirements specified in
2.1 Hardware-accelerated media rendering.

2.3 PROGRESSIVE DOWNLOAD AND BUFFERED PLAYBACK

The various network streams played back by the selected technology will need to
provide buffering support based on the playback speed and the available
bandwith.

If possible a progressive download strategy should be used, using such a strategy
the network media file is temporarily stored locally and playback starts when it is
expected the media can be played back without a need to pause for further
buffering. Or in other words, playback starts when the remaining time to finish the
download is less then the playback time of the media.

For live media where progressive downloading is not possible (e.g. internet radio)
a limited amount of buffering should be provided to offset the effect of temporary
jitter in the available bandwidth.

Apart from the various buffering strategies, the usage of adapative bitrate
streaming technologies such as HLS or MPEG-DASH is recommended if available

to continuously adapt playback to the current network conditions.

2.4 DISTRIBUTED PLAYBACK SUPPORT

The Apertis platform wishes to be able to share playback between multiple
endpoints. Any endpoint would be able to watch the same media that another is
watching with perfect synchronization.

2.5 CAMERA DISPLAY ON BOOT

Apertis requires the capability to show camera output during boot, for example to
have rear camera view for parking quickly. Ideally, the implementation of this
feature must not affect the total boot time of the system.

2.6 VIDEO PLAYBACK ON BOOT

Apertis requires the capability to show a video playback during boot. This shares
some points with the section 2.5 Camera display on boot regarding the
requirements, the implementation, and risks and concerns. Collabora has some
freedom here to restrict the fps, codecs, resolutions, quality of the video to be
playback in order to be able to match the requirements.

2.7 CAMERA WIDGET

Apertis requires that a camera widget that can be embedded to applications to
easily display/manipulate camera streams is provided. The widget should offer the
following features:

• Retrieve the list of supported camera devices and ability to change the
active device

• Support retrieving and updating color balance (saturation, hue, brightness,
contrast), gamma correction and device capture resolution

• Provides an interface for image processing
• Record videos and take pictures

2.8 TRANSCODING

Transcoding can be loosely described as decoding, optionally processing and re­
encoding of media data (video, audio, …) possibly from one container format to
another. As a requirement for Apertis, transcoding must be supported by the
Multimedia Framework.

2.9 DVD PLAYBACK

Most DVDs are encrypted using a system called CSS1 (content scrambling

1 http://www.dvdcca.org/css.aspx

system), that is designed to prevent unauthorized machines from playing DVDs.
CSS is licensed by the DVD Copy Control Association (DVD CCA), and a CSS
license is required to use the technology, including distributing CSS enabled DVD
products.

Apertis wishes to have a legal solution for DVD playback available on the platform.

2.10 TRAFFIC CONTROL

Traffic control is a technique to control network traffic in order to optimize or
guarantee performance, low­latency, and/or bandwidth. This includes deciding
which packets to accept at what rate in an input interface and determining which
packets to transmit in what order at what rate on an output interface.

By default traffic control on Linux consists of a single queue which collects entering
packets and dequeues them as quickly as the underlying device can accept them.

In order to ensure that multimedia applications have enough bandwidth for media
streaming playback without interruption when possible, Apertis requires that a
mechanism for traffic control is available on the platform.

3 SOLUTIONS

3.1 MULTIMEDIA FRAMEWORK

Based on the requirements, we propose selection of the GStreamer
multimedia framework2, a LGPL-licensed framework covering all of the required
features.

The GStreamer framework, created in 1999, is now the de-facto multimedia
framework on GNU/Linux systems. Cross-platform, it is the multimedia backbone
for a wide variety of use-cases and platforms, ranging from voice-over-IP
communication on low-power handsets to transcoding/broadcasting server farms.

Its modularity, through the usage of plugins, allows integrators to re-use all the
existing features (like parsers, container format handling, network protocols, and
more) and re-use their own IP (whether software or hardware based).

Finally, the existing eco-system of application and libraries supporting GStreamer
allows Apertis to benefit from those where needed, and benefit from their on-
going improvements. This includes the WebKit browser, and the Clutter toolkit.

The new GStreamer 1.0 series will be used for Apertis. In its 6 years of
existence, the previous 0.10 series exhibited certain performance bottlenecks that
could not be solved cleanly due to the impossibility of breaking API/ABI
compatibility. The 1.0 series takes advantage of the opportunity to fix the
bottlenecks through API/ABI breaks, so Apertis will be in a great position to have a
clean start.

Amongst the new features the 1.0 series brings, the most important one is related
to how memory is handled between the various plugins. This is vital to support
the most efficient processing paths between plugins, including first-class support
for zero-copy data passing between hardware decoders and display systems.

Several presentations are available detailing in depth the changes in the
GStreamer 1.0 series.34

3.2 HARDWARE-ACCELERATED MEDIA RENDERING

The current set of GStreamer plugins as delivered by Freescale targets the
Gstreamer 0.10 series, for usage with GStreamer 1.0 these plugins will need to be
updated.

As freescale was not able to deliver an updated set of plugins in a reasonable
timeframe Collabora has done a initial proof of concept port of the VPU plugins to
Gstreamer 1.0 allowing ongoing development of the middleware stack to focus

2 http://gstreamer.freedesktop.org/
3 Presentation at ELC 2012 by Edward Hervey : http://video.linux.com/videos/gstreamer-10-no-

longer-compromise-flexibility-for-performance
4 Presentation at GStreamer Conference 2011 by Wim Taymans :

http://gstconf.ubicast.tv/videos/keynote-gstreamer10/

purely on Gstreamer 1.0.

Eventually it is expected that freescale will deliver an updated set of VPU plugins
for usage with Gstreamer 1.0. to benefit as much as possible from improvements
provided by the “upstream” GStreamer in the future, it is recommend need to
ensure that the platform-specific development is limited to features specific to
that platform.

Therefore it is recommended for the updated VPU plugins to be based on existing
base video decoding/encoding classes5. This will ensure that:

• The update plugins will benefit from any improvements done in those
base classes and future adjustments to ensure proper communication
between decoder/encoder elements and other elements (like display and
capture elements).

• The updated plugins will benefit from commonly expected behaviors of
decoders and encoders in a wide variety of use-cases (and not just local
file playback) like QoS (Quality of Service), low-latency and proper
memory management.

3.3 BUFFERING PLAYBACK IN GSTREAMER AND CLUTTER-GST

ClutterGstPlayer6 uses the playbin27 GStreamer element for multimedia content
playback, which uses queue28 element to provide the necessary buffering for both
live and on demand content. For the Apertis release (12Q4) new API was added to
clutter-gst to make it more easier for applications to correctly control this buffer.
Work is currently in progress to upstream these changes.

3.3.1 PROGRESSIVE BUFFERING BASED ON EXPECTED BANDWIDTH

Depending on the locality it might be desirable to not only buffer based on the
currently available bandwidth, but also on the expected bandwidth. For example
the navigation system may be aware of a tunnel coming up, where no or only very
limited bandwidth is available.

Due to the way buffering works in Gstreamer the final control for when playback
starts rests with the application, normally an application uses the estimates for
remaining download time provided by gstreamer (which is based on the current
download speed). In the case where the application has the ability to make a more
educated estimate by using location/navigation information, it can safely ignore

5 API documentation : http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-
libs/html/gst-plugins-bad-libs-GstBaseVideoDecoder.html ,
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-
bad-libs-GstBaseVideoEncoder.html

6 http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
7 http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-

plugins-base-plugins-playbin2.html
8 http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-

plugins-queue2.html

Gstreamers estimate and purely base playback start on its own estimate.

3.4 DISTRIBUTED PLAYBACK

As the basis for the distributed playback proof of concept solution Collabora
suggest the usage of the Aurena9 client/daemon infrastructure. Aurena is a small
daemon which announces itself on the network using avahi. This daemon provides
the media and control information over http and also provide provides a
Gstreamer based network clock for to use for clients to synchronize against.

Aurena will be integrated in the Apertis distribution an example clutter-gst client
will be provided.

As Aurena is an active project and further work on this topic is scheduled for the
Q2 of 2014, more details will be provided on the current state and functionality
available in Aurena closer to that time.

3.5 CAMERA AND VIDEO DISPLAY ON BOOT

In order to keep the implementation both low in complexity and flexible a pure
user-space solution is recommended, that is to say no kernel modification or
bootloader modification are done to enable this functionality.

The advantage of such a solution is that a lot of common userspace functionality
can be re-used by the implemention. The main disavantage is that this
functionality will only be available when userspace is started.

To provide a general feeling for the timings involved when running an unoptimized
darjeeling image10 (130312) on the I.MX6 Sabrelite board the boot breakdown is
as follows (Note that darjeeling isn't optimized for startup time) :

• 0.00s: Power plugged in

• 0.26s: u-boot started

• 1.23s: Kernel starting

• 4.12s: LVDS screen turns on

• 4.59s: Initramfs/mini userspace starting

• ~6.00s: Normal userspace starting.

Even though these number should be improved by the boot optimisation work
(planned for Q2, 2013), the same order of magnitude will most likely remain for
the SabreLite hardware booting from MMC.

9 https://github.com/thaytan/aurena
10The u-boot boot delay was disable for this test, no other changes.

As a basis building block for providing this functionality Plymouth11 will be used.
Plymouth is the de-factor application used for showing graphical boot
animations while the system is booting, being using by Fedora, Ubuntu and
many others. On most systems Plymouth takes advantage of the modesetting
DRM drivers, with fallbacks to using the old-style dumb framebuffer or even a
pure text mode.

Plymouth has a extensive pluggable theming system. New themes can be
written either in C or using a simple scripting language. A good
overview/introduction of the plymouth specific theme scripting can be found in
a series of blog posts by Charley Brey12.

Plymouth has the ability to use themes which consists of a series of full-screen
images or in principle even a video file, however most boot animations are kept
relatively simple and are rendered on the fly using plymouths built-in image
manipulation support. The reason for this is simply an efficiency trade-of, while
on-the-fly rendering adds some cpu load for simpler animations that cpu load
will be still lower then loading every frame from an image file or rendering a
video. Furthermore this approach reduces the size and number of assets which
have to be loaded from storage. As such, to minimize the impact on boot
performance the use simple themes which are rendered on the fly is
recommended over the use of full-screen images or videos.

To add support for the “camera on boot” functionality plymouth will be
extended such that it can be requested to switch to a live-feed of the (rear-
view) camera during boot-up. To be able to support a wide range of cameras
(e.g. both directly attached cameras and e.g. ip cameras) the use of Gstreamer
is recommended for this functionality. However to ensure boot speed isn't
negatively impacted Gstreamer can't be used from the initramfs as this would
significantly increase its size and thus slowing down the boot. An alternative to
using Gstreamer would be to implement dedicated, hardware/camera specific
plugins which are small enough to be included in the initramfs.

During Q2 of 2013 work will be done to optimise the boot time of Apertis. At
which point it will become more clear what the real impact of delaying camera-
on-boot until the start of full userspace is.

3.6 CAMERA WIDGET AND CLUTTER-GST

To provide the camera widget functionality a new actor was developed for clutter-
gst. As any other clutter actor, the ClutterGstCameraActor can be embedded in
any clutter application and supports all requirements either through the usage of
provided convenience APIs or using GStreamer APIs directly. Image processing is
achieved with the usage of pluggable GStreamer elements.

11http://www.freedesktop.org/wiki/Software/Plymouth
12http://brej.org/blog/?cat=16

3.7 TRANSCODING

GStreamer already supports transcoding13 of various different media formats
through the usage of custom pipelines specific to each input/output format.

In order to simplify the transcoding process and avoid having to deal with several
different pipelines for each supported media format, Collabora proposes adding a
new transcodebin GStreamer element which would take care of handling the
whole process automatically. This new element would provide a stand-alone
everything-in-one abstraction for transcoding much similar to what the playbin2
element does for playback. Applications could then take advantage of this
element to easily implement transcoding support with minimal effort.

3.8 DVD PLAYBACK

Fluendo DVD Player14 is a certified, commercial software designed to reproduce
DVDs on Linux/Unix and Windows platforms allowing legal DVD playback on Linux
using GStreamer. It supports a wide range of features including, but not limited to,
full DVD playback support, DVD menu and subtitles support.

Other open-source solutions are available, but none of them meets the legal
requirements and for that Collabora proposes the usage of Fluendo DVD Player
and to provide the integration of it on the platform.

3.9 TRAFFIC CONTROL

Traffic control and shaping comes in two forms, the control of packets being
received by the system (ingress) and the control of packets being sent out by the
system (egress). Shaping outgoing traffic is reasonably straight-forward, as the
system is in direct control of the traffic sent out through its interfaces. Shaping
incoming traffic is however much harder as the decision on which packets to sent
over the medium is controlled by the sending side and can't be directly controlled
by the system itself.

However for systems like Apertis control over incoming traffic is far more
important then controlling outgoing traffic. A good example use-case is
ensuring glitch-free playback of a media stream (e.g. internet radio). In such a
case, essentially, a minimal amount of incoming bandwidth needs to be
reserved for the media stream.

For shaping (or rather influencing or policing) incoming traffic, the only practical
approach is to put a fake bottleneck in place on the local system and rely on
TCP congestion control to adjust its rate to match the intended rate as enforced
by this bottleneck. With such a system it's possible to, for example, implement
a policy where traffic that is not important for the current media stream
(background traffic) can be limited, leaving the remaining available bandwidth
for the more critical streams .

13http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
14http://www.fluendo.com/shop/product/fluendo-dvd-player/

However, to complicate matters further, in mobile systems like Apertis which
are connected wirelessly to the internet and have a tendency to move around
it's not possible to know the total amount of available bandwidth at any specific
time as it's constantly changing. Which means, a simple strategy of capping
background traffic at a static limit simply can't work.

To cope with the dynamic nature a traffic control daemon will be implemented
which can dynamically update the kernel configuration to match the current
needs of the various applications and adapt to the current network conditions.
Furthermore to address the issues mentioned above, the implementation will
use the following strategy:

• Split the traffic streams into critical traffic and background traffic. Police
the incoming traffic by limiting the bandwidth available to background
traffic with the goal of leaving enough bandwidth available for critical
streams.

• Instead of having static configuration, let applications (e.g. a media
player) indicate when the current traffic rate is too low for their purposes.
This both means the daemon doesn't have to actively measure the traffic
rate and allows it cope with streams that don't have a constant bitrate
more naturally.

• Allow applications to indicate which stream is critical instead to properly
support applications using the network for different types of functionality
(e.g. a webbrowser). This rules out the usage of cgroups which only
allows for per-process level granularity.

Communication between the traffic control daemon and the applications will be
done via D-Bus. The D-Bus interface will allow applications to register critical
streams by passing the standard 5-tuple (source ip and port, destination ip and
port and protocol) which uniquely identify a stream and indicate when a particular
stream bandwidth is too low.

To allow the daemon to effectively control the incoming traffic, a so­called
Intermediate Functional Block device is used to provide a virtual network device to
provide an artificial bottleneck. This is done by transparently redirecting the
incoming traffic from the physical network device through the virtual network
device and shape the traffic as it leaves the virtual device again. The reason for
the traffic redirection is to allow the usage of the kernels egress traffic control to
effectively be used on incoming traffic. The results in the example setup shown
below (with eth0 being a physical interface and ifb0 the accompanying virtual
interface).

To demonstrate the functionality as describe above a simple demonstration media
application using Gstreamer will be written that communicates with the Traffic control
daemon in the manner described. Furthermore some a testcase will be provided to
emulate changing network conditions.

Illustration 1: Network traffic flow

	Document Change Log
	1 Introduction
	2 Requirements
	2.1 Hardware-accelerated media rendering
	2.2 Multimedia Framework
	2.3 Progressive download and buffered playback
	2.4 Distributed playback support
	2.5 Camera display on boot
	2.6 Video playback on boot
	2.7 Camera widget
	2.8 Transcoding
	2.9 DVD playback
	2.10 Traffic control

	3 Solutions
	3.1 Multimedia Framework
	3.2 Hardware-accelerated Media Rendering
	3.3 Buffering playback in GStreamer and clutter-gst
	3.3.1 Progressive buffering based on expected bandwidth

	3.4 Distributed playback
	3.5 Camera and Video display on boot
	3.6 Camera widget and clutter-gst
	3.7 Transcoding
	3.8 DVD playback
	3.9 Traffic control

