
Secure
Automated Cloud

Contacts

Design
This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

Author: Travis Reitter
Contributors: Martin Barrett, Sjoerd Simons, Mateu Batle
Version: 0.4.4
Status: Final
Date: 5. December 2014
Last Reviewer: Jeremy Whiting

DOCUMENT CHANGE LOG
Version Date Changes

0.4.4 2014-12-05 • Updated document template

0.4.3 2012-05-11 • Updated title and file name to follow Document
Naming Scheme

0.4.2 2012-05-03 • 5.1.3 Out of scope: added discussion against
supporting abstract contact caching for third-party
backends

• 10 Abstracting Contacts Libraries: recommended
type-ahead contact selector for widget utility
library

•

0.4.1 2012-05-02 • 5.6 Zeitgeist: noted API stability
• 5.6.1 Required Work: removed need to support

SMS events; arbitrary events are already
supported

0.4.0 2012-05-02 • 5.1.2 Required work: added arbitrary field support
for Folks as a requirement

• 5.1.3 Out of scope:
◦ recommended the voice search functionality

include a daemon which initializes Folks early to
minimize search lag

◦ referred to the upcoming SAC Global Search
document for more details on context-
independent search

• 5.6.1 Required Work: explicitly added SMS event
support for Zeigeist as a requirement

• 10 Abstracting Contacts Libraries: added
guidelines for abstracting contacts libraries

0.2.1 2012-03-16 • Describe the event logging requirements and how
they will be fulfilled

• Introduce the problems that potentially warrant
opportunistic caching and pose relevant open
questions

• Clarify that backends are responsible for their own
caching

• Describe how contacts can be accessed on a per-
service basis, not just as meta-contacts

0.2.0 2012-03-15 • Add requirement for web service contact cache
• Note that linking and anti-linking will be reversible
• Remove requirement for browsing contacts on

Bluetooth-connected phones
• Clarify that speech-to-text conversion will be

performed above the middleware
• Clarify that changes to external contacts will not

be pushed to their service
• Describe search functionality in greater detail,

including how each connected phone will get its
own contact DB

• State that syncing is automatic
• Add requirement for sync-only/keep-remote flags

on Folks contact sources
• Support reading SIM card contacts from built-in SIM

cards
• Support abstract creation and deletion of local

address books

0.1.4 2012-02-21 • Added component architecture diagram
• Corrected that web service configuration may be

different than chat/VoIP service configuration
• Moved implementation of Bluetooth browsing and

sync into Bosch's territory, since they would not fit
well with Folks' current model

• Noted the option to keep web service contacts
isolated from Folks upon request

0.1.3 2012-02-20 • Note bindings for Folks

0.1.2 2012-02-20 • Added section about multi-user concerns
• Added section for storage concerns

0.1.1 2012-02-20 • Explained in greater detail why we prefer one-way
contact syncing

• Clarified that any license agreements with web
services would need to be reached by Bosch and
the respective service providers

• Add requirement for browsing Bluetooth-paired
contacts (not just syncing)

• Clarified section on chat and VoIP clients
• Clarified section on SIM contacts
• Changed recommendation from re-using parts of

Empathy and Gnome Contacts to simply consulting
them as example code.

• Clarified utility of web service contacts

0.1.0 2012-02-16 • Initial version

Table of Contents
Document Change Log...3
1 Introduction...6
2 Integrated Address Book Versus Alternative Solutions...7
3 Contact Sources..8

3.1 Local Sources...8
3.2 Bluetooth-paired phone..8

3.2.1 Synchronization...8
3.3 Chat and Voice-over-IP Services...9
3.4 Web services..9
3.5 SIM Card...10
3.6 Read-only Operation for External Sources...10

4 Standard Behavior and Operations...11
4.1 Contact Management...11
4.2 Contact Aggregation and Linking...11
4.3 Local Address Book Management...11
4.4 Search..12

4.4.1 Sorting and Pagination..12
4.5 Event Logging..12

4.5.1 Out of Scope..13
4.6 Caching..13

4.6.1 Opportunistic Caching...13
4.6.2 Open Questions...13

5 Components..14
5.1 Folks...14

5.1.1 Bindings...14
5.1.2 Required work..14
5.1.3 Out of scope..15

5.2 Telepathy..16
5.3 Evolution Data Server (EDS)..16
5.4 libsocialweb..16
5.5 SyncEvolution...16
5.6 Zeitgeist...17

5.6.1 Required Work...17
6 Architecture..18

6.1 Accessibility of Contacts By Source..19
7 User interfaces..21
8 Multiple Users...22
9 Storage considerations...23
10 Abstracting Contacts Libraries..24

Illustration Index
Illustration A: proposed contacts component architecture.....................................16

1 INTRODUCTION
This document outlines our design for address book contacts within the SAC
system. It describes the many sources the system can draw upon for the user's
contacts, how it will manage those contacts, which components will be necessary,
and what work will be needed in the middleware space to enable these features.

Contacts are representations of people that contain some details about that
person. These details are often directly actionable: phone numbers can be called,
street addresses may be used as destinations for the navigation system. Other
details, such as name and avatar are purely representational.

We propose a contact system which uses the Folks contact aggregator to retrieve
contacts from multiple sources and automatically match up contacts which
correspond to a single person. This will give a thorough and coherent view of
one's contacts with minimal effort required of the user.

2 INTEGRATED ADDRESS BOOK VERSUS ALTERNATIVE
SOLUTIONS
The following design is based around the concept of a heavily-integrated address
book which links together contacts from many contact sources, providing a
common interface for applications to access these contacts. As presented below,
the only available contacts which will not be fully-integrated into the common
contact view will be contacts available on a paired Bluetooth device.

The level of contact source integration is flexible. If Bosch would prefer to limit
contact integration to the local address book and chat/Voice-over-IP contacts to,
for example, isolate Facebook or Twitter contacts in their own address book(s), to
be accessed by a special library of Bosch's creation, Collabora is ready and able to
adjust this design.

3 CONTACT SOURCES
There are many potential sources for contacts, as people's contact details are
frequently split over many services. The proposed system aggregates contacts
from multiple sources in a way that is seamless to the user. See the
Components section on Folks for more details of the components involved.

3.1 LOCAL SOURCES

New contacts may be created locally by importing contacts from a Bluetooth-
paired phone (see below) or a contact editor dialog (to be created by Bosch or
their clients; see section User interfaces).

These local contacts may contain a wide variety of detail types, including (but not
limited to):

◦ Full name
◦ Phone numbers
◦ Street addresses
◦ Email addresses
◦ Chat usernames on various services
◦ User-selected groups
◦ Notes

3.2 BLUETOOTH-PAIRED PHONE

3.2.1 SYNCHRONIZATION

Contacts may be simply synchronized to a SAC system by means of a SyncML1
contact transfer from a phone paired with the SAC system over Bluetooth. This
operation is designed to intelligently merge fields added to contacts on the source
phone to avoid creating duplicates.

To manage complexity, this function will only be supported from a phone to the
SAC system, not the other way around. Systems which support two-way contact
synchronization have a number of issues to contend with, including:

◦ Contacts do not contain “last modified” time stamps, so it is rarely
obvious how to resolve conflicts

◦ “Fuzzy-matching” fields for cases of equivalent names or phone numbers
is not consistently implemented across different systems (if it is
implemented at all)

◦ Even if equivalent fields are correctly matched, it is not clear which
version should be preferred

◦ Because conflict resolution may not be symmetrical between the two
directions of synchronization, the contacts in the two systems may never
reach a stable state, potentially causing other side effects (such as
duplicates on the phone)

1 http://en.wikipedia.org/wiki/SyncML

By limiting synchronization from the phone to the SAC instance (with a “source
wins” conflict resolution policy), we can avoid the aforementioned issues and
more. This simpler scheme will also be easier for users to understand, improving
the user exeperience.

Synchronization will be performed automatically each connection of a phone to
the SAC system.

Each phone device will receive its own contact address book on the SAC system
which will be created upon first connection and re-used upon subsequent
connections. This is meant to make it trivial to remove old address books based
upon storage requirements.

3.3 CHAT AND VOICE-OVER-IP SERVICES

Most chat and some Voice-over-IP (VoIP) services maintain contact lists, so these
are another potential source of contacts. We recommend supporting contacts from
audio- and video-capable services, such as Session Initiation Protocol (SIP),
Google Talk, and XMPP. These contacts and their services provide an alternative
type of audio call which users may occasionally prefer to mobile phone calls for
purposes of call quality and billing.

Additionally, contacts on some of these services may provide extended
information, such as a street address, which the user might not otherwise have in
their address book.

Our system will cache these contacts and their avatars from the service contact
list. This will allow SAC applications to always display these contacts. When the
user attempts to call a chat/VoIP contact while offline, the system may prompt the
user to go online and connect that account to complete the action.

From a user perspective, the configuration of chat and VoIP accounts within SAC
would be simple. In most cases, just providing a username and password will add
that user's tens or hundreds of service contacts to the local address book. For
limited effort, this can significantly increase the ways the user can reach their
acquaintances in the future.

3.4 WEB SERVICES

The growing number of web services with social networking is yet another source
of contacts for many users. Some services may provide useful contact
information, such as postal addresses or phone numbers. In these cases, it may
be worthwhile to include web service contacts (since implementation for some
services already exist within Folks and libsocialweb; see below).

In the case of multi-seat configurations, it may also be worthwhile to support
additional web services for entertainment purposes. Potential uses include
playback of contacts' YouTube videos, reading through contacts' Facebook status
updates, Twitter tweets, and other use cases which do not apply to a driver due to
their attention requirements.

In general, web services require third parties access their content through a
specially-issued developer key. In many cases, this will require Bosch to secure
license agreements with the provider to guarantee reliable service as their terms
of service change frequently (usually toward less access).

Our system will cache these contacts and their avatars from the service contact
list. This will allow SAC applications to always display these contacts, even when
offline.

3.5 SIM CARD

Contacts may be retrieved from a SIM card within a vehicle's built-in mobile phone
stack. These contacts will be accessible from the SAC contacts system. However,
any changes to these contacts will not be written back to the SIM card. See Read-
only Operation for External Sources.

3.6 READ-ONLY OPERATION FOR EXTERNAL SOURCES

Modifications of contacts will be limited to Local Sources. Depending upon the
user interfaces created, users may be able to set details upon local contacts
which may appear to affect external contacts such as web service contacts or
Bluetooth-connected phone contacts. However, these changes will not actually be
written to the corresponding contact on the external source.

4 STANDARD BEHAVIOR AND OPERATIONS

4.1 CONTACT MANAGEMENT

Our proposed system will support adding, editing, and removing contacts. New
contacts will be added to Local Sources. Though the Components which will
enable contact management already support these features, Bosch will need to
implement User interfaces (see below) to present these functions to the user.
Similarly, contacts will need to be presented as necessary by end-user
applications.

4.2 CONTACT AGGREGATION AND LINKING

Contacts will be automatically aggregated into “meta-contacts” which contain the
sum details amongst all sub-contacts. The criteria for matching up contacts will
be:

◦ Equivalent identifier fields – for instance, two contacts with the email
address bob@example.com or phone numbers “+18001234567” and “1-
800-123-4567”

◦ Similar name fields – for instance, contacts with the full names “Robert
Doe”, “Rob Doe”, and “Bob Doe” (which all contain variations of the
same given name)

This system will be careful to avoid matching upon unverified fields which would
allow a remote contact to spoof their identity for the purpose of being matched
with another contact. In a real-world example, Facebook contacts may claim to
own any chat name (even those which belong to other people). If we
automatically matched upon this field, they could, theoretically, initiate a phone
call and appear to the user as that other person.

The user will also be able to manually “link” together any contacts or, similarly,
manually “anti-link” any contacts which are accidentally mismatched through the
automatic process.

Linking and anti-linking will be reversible operations. This will avoid a user
experience issue found in some contact aggregation systems, such as the one
used on the Nokia N900.

4.3 LOCAL ADDRESS BOOK MANAGEMENT

The SAC contacts system will support adding and removing local contact stores in
an abstract way that does not assume prior knowledge of the underlying address
book store. In other words, to add or remove an underlying Evolution Data Server
contact database, a client application will be able to use functionality within Folks
and, indeed, not even need to know how the contacts are stored.

mailto:bob@example.com

4.4 SEARCH

This contact system will include the ability to search for contacts by text. Search
results will be drawn from all available contact sources and will support support
“fuzzy” matching where appropriate. For instance, a search for the phone number
“(555) 123-4567” will return a contact with the phone number “+15551234567”
and a search for the name “Rob” will match a contact named “Robert.”

Each type of contact detail field supports checking for both equality (for example,
“Alice” ≠ “Carol”) and equivalence (for example, the phone number “(555) 456
7890” is equivalent to “4567890”). This allows the contact system to add or
change fuzzy matching for fields without needing to break API or treat certain field
details specially based upon their names.

4.4.1 SORTING AND PAGINATION

As a convenience for applications and potentially an optimization, the contacts
system will support returning search results in sorted order (for example, by first
name).

Furthermore, the search system will support returning a limited number of results
at a time (“paginating” the result set). This may improve performance for user
interfaces which only require a small number of results at once.

4.5 EVENT LOGGING

Related to the contacts system, Collabora will provide an event logging which logs
simple, direct communication between the user and their contacts. Supported
events include VoIP and standard mobile phone calls, SMS messages, and chat
conversations.

Events will include at least the following fields:

• User Account ID – e.g., “+15551234567”, “alice@example.jabber.org”

• Contact service ID – the unique ID of the contact involved

• Direction – sent or received

• Event type – call, text message

• Timestamp

• Message content – for text messages of any type

• Success – whether the call successfully connected, whether a text
message was successfully sent

The contact service ID can be used by applications to look up extended
information from the contacts system, such as full names and avatars. These
details can then be displayed within the application to provide a consistent view
of contacts when displaying their conversations.

mailto:alice@example.jabber.org

4.5.1 OUT OF SCOPE

Email conversations will be out of scope due to their relatively large message
sizes and their common use for indirect conversations (such as mailing list
messages, advertisements or promotions, social networking status updates, and
so on).

Messages exchanges with web service contacts will not be supported by default.
However, the event logging service will allow third-party software to add events to
the database. So events not logged by default by the middleware may be added
by Bosch or entirely third-party applications.

4.6 CACHING

In general, contact sources will be responsible for maintaining their own cache in
a way that is transparent to client applications.

4.6.1 OPPORTUNISTIC CACHING

It may be best to defer bandwidth-intensive operations (such as full contact list
and avatar downloads) until the SAC system can connect to an accessible WiFi
network (such as the user's home or work network).

4.6.2 OPEN QUESTIONS

Will there be a general framework for libraries and applications to check whether
network data should be considered “cheap” or “too expensive”? And should the
contacts system factor that into its network operations?

Most bare contact lists (not including avatars) have trivial data length. For
example, my very large Google contacts list of 1,600 contacts only contains 171
kilobytes of data. Common contact lists are substantially smaller than that.

When factoring in avatars (for the first contact list download), contact list sizes
can potentially reach a few megabytes in the worst case. This could be an
unacceptable amount of data to transfer on a pay-as-you-go data plan. But at the
same time, this is a relatively small amount of data and will only get relatively
smaller as data service plans improve.

Considering the factors above, would it be worthwhile for the contacts system to
support opportunistically caching remote contact lists on bandwidth-limited
networks?

5 COMPONENTS

5.1 FOLKS

Folks2 is a contact management library (libfolks) and set of backends for different
contact sources. One of Folks' core features is the ability to aggregate meta-
contacts from different contacts (which may come from multiple backends). These
meta-contacts give a high-level view of people within the address book, making it
easy to select the best method of communication when needed. For instance, the
driver could just as easily call someone by their SIP address as their mobile phone
if they prefer it for call quality or billing reasons.
The actively-maintained Folks backends include:

◦ Telepathy – Chat and audio/video call contacts, including Google Talk,
Facebook, and SIP

◦ Evolution Data Server (EDS) – Local address book contacts
◦ libsocialweb – Web service contacts, including YouTube and Flickr

Many of these backends have associated utility libraries which allow client
software to access contact features which are unique to that service. For instance,
the Telepathy backend library provides Telepathy contacts, which may be used to
initiate phone calls.
Collabora employee and author of this design, Travis Reitter, created and
maintains Folks. Any necessary changes will be easy to merge upstream.

5.1.1 BINDINGS

The Folks libraries have native bindings for both the C/C++ and Vala programming
languages. There is also support for binding any languages supported by GObject
Introspection (including Python, Javascript, and other languages), though this
approach has less real-world testing than the C/C++ and Vala bindings.

5.1.2 REQUIRED WORK

As described in the section titled Contact Aggregation and Linking, our system
will support automatic linking of contacts as well as anti-linking (for mismatched
automatic links). Folks currently supports recommending links but does not yet
act upon these recommendations automatically, so this would need to be
implemented.

Along with this, Folks will need the ability to mark contacts specifically as non-
matches (by anti-linking them). There is preliminary code for this feature, but it
will need to be completed for this functionality.

In order to enable display of chat/VoIP contacts while offline, we will need to
implement a chat/VoIP contact list cache within Folks. This will be similar to
existing code for caching avatars, but simpler.

Similarly, we will need to implement a web service contact cache to display web
service contacts while offline.

2 http://telepathy.freedesktop.org/wiki/Folks

Search functionality in Folks is nearly complete but still needs to be merged to
mainline3. Additionally, the ability to perform “deep” searches will require support
for search-only backends4.

The search functionality will also need to support sorting and pagination as
described in Sorting and Pagination before it can be merged upstream.

Folks external contact sources will need the ability to be designated as
“synchronize-only” or “keep-remote”. Contact sources designated as synchronize-
only will be automatically synchronized as necessary (such as when a phone is
connected over Bluetooth). Keep-remote sources will not be synchronized to the
SAC system and will only be accessible while the remote source is available
(whether over a local or Internet connection).

For Folks to access contacts stored on a vehicle's built-in SIM card, we will need to
write an oFono backend to retrieve the contacts from that hardware.

Abstract contact address book creation and deletion within Folks will require new
work.

In case Opportunistic Caching is required for the contacts system, this will need
to be added as a new feature to Folks and its Telepathy and libsocialweb
backends.

Bosch inquired about support for storing arbitrary data in contacts. This has not
yet been implemented in Folks, but has already been discussed5 and will be
implemented.

5.1.3 OUT OF SCOPE

We recommend application logic for synchronizing an entire address book from a
Bluetooth-paired phone be implemented by Bosch in a new library or application
on top of SyncEvolution (which we will provide in our Reference images). The
contacts created in this process will automatically be stored as any other local
contact.

Bosch has identified speech-based search as a major use case for the address
book software in SAC. The text-based search portion of this use case will be
supported by Folks; however, the parsing of audio data into a text for searching
will be the responsibility of Bosch-specific software above the middleware. Global
search in general will be covered in the upcoming document “SAC Global Search”.

Collabora recommends Bosch implement the voice search in whole or in part as a
service daemon started automatically upon boot. This would allow dependent
functionality, including Folks, to be initialized in advance of user interaction. This
will be necessary to minimize latency between voice search and the display of
results.

Bosch also requested Collabora consider support for contact caching for abstract
third-party backends. This certainly would be possible and would likely take the

3 https://bugzilla.gnome.org/show_bug.cgi?id=646808
4 https://bugzilla.gnome.org/show_bug.cgi?id=660299
5 https://bugzilla.gnome.org/show_bug.cgi?id=641211

https://bugzilla.gnome.org/show_bug.cgi?id=641211
https://bugzilla.gnome.org/show_bug.cgi?id=660299
https://bugzilla.gnome.org/show_bug.cgi?id=646808

form of a vCard contact store. However, at this time, Collabora recommends not
implementing this feature. We would much prefer to delay this until there exist at
least two third-party Folks backends with which to test this functionality during
development. This is primarily due to the risks involved with committing to an API.
Once officially released, this API will need to be kept stable. So it is critical that the
API be tested by multiple independent code bases before finalization.
Furthermore, at this time, there exist no known third-party Folks backends. In the
meantime, third-party backends could still implement opaque contact caches
suited to their own needs and migrate to a centralized implementation if and
when it is created.

5.2 TELEPATHY

The Telepathy6 communications framework, which Collabora created and
maintains, retrieves contacts for many types of chat services, including Google
Talk, Facebook, XMPP, and most other popular chat services. It also supports
supports audio and video calls over SIP, standard mobile phone services, and the
previously-mentioned chat services (depending upon provider).

5.3 EVOLUTION DATA SERVER (EDS)

Evolution Data Server is a service which stores local address book contacts and
can retrieve contacts stored in Google accounts or remote LDAP contact stores.
Contacts may contain all defined and arbitrary vCard78 attributes and parameters,
which is a common contact exchange format in address book systems. This allows
Folks to store and retrieve contacts with many types of details.

EDS is the official address book store for the Gnome Desktop and has been used
in Nokia's internet tablet devices and N900 mobile phone. It has been the default
storage backend for Folks since Gnome 3.2, which was released in September,
2011.

5.4 LIBSOCIALWEB

In the case that we support web service contacts, libsocialweb will be the
component that provides these contacts through its Folks backend. Note that
exactly which web services can be used depends upon both implementation in
libsocialweb and license agreements with those services. See Web services,
above, for more details.

5.5 SYNCEVOLUTION

SyncEvolution9 is a service which supports synchronizing address books between
two sources. While it supports many protocols and storage services, it best

6 http://telepathy.freedesktop.org/wiki/
7 http://www.ietf.org/rfc/rfc2426.txt
8 http://en.wikipedia.org/wiki/VCard
9 http://syncevolution.org/

supports synchronizing contacts from a SyncML client over Bluetooth to Evolution
Data Server, which will be our primary contact store. Many mobile phones support
the SyncML protocol as a means of contact synchronization.

This method requires Bluetooth OBEX10 data transfer support, which is widely
supported by most Bluetooth stacks, including BlueZ11.

5.6 ZEITGEIST

Zeitgeist12 is open source event-tracking software that will serve as the Event
Logging service for SAC. It is a flexible event store and uses external services to
store their events in a central location. So, by its nature, it supports third-party
applications without prior knowledge of them.

Zeitgeist is committed to API stability in part because Ubuntu's Unity user
interface depends upon it.

5.6.1 REQUIRED WORK

A simple service to monitor and send Telepathy chat and VoIP call events to
Zeitgeist is in progress, so this work will need to be finished and merged
upstream.

10http://en.wikipedia.org/wiki/OBEX
11http://www.bluez.org/
12http://zeitgeist-project.com/

6 ARCHITECTURE
In our recommended architecture, contacts applications will use libfolks directly.
Libfolks, in turn, will use its Telepathy backend for chat and VoIP service contacts;
Evolution Data Server backend for local contacts, and its libsocialweb backend for
web service contacts.

Not pictured in Illustration A is the optional linking between the application and
each backend's utility library (for accessing service-specific contact features).

6.1 ACCESSIBILITY OF CONTACTS BY SOURCE

Contacts within this system are accessible on two levels: Meta-contacts,
representing an entire person, are available for all contacts in the system. Each
meta-contact contains at least one contact. For many use cases, applications can

Illustration A: proposed contacts component architecture

Contacts program

<app>

libfolks

e-addressbook-factory

Evolution Data Server
(local storage)

Locally stored details
Name
Phone Number
Physical Address
Birthday

Telepathy
(Chat/VoIP)

Nickname
IM Address

Picture
Presence

Libsocialweb-core

Facebook

Name
Web page
Birthday
Interests

Twitter

Name
Web page

Libsocialweb
(web services)

Telepathy (Chat/VoIP)

Mission Control
Gabble

(XMPP/GTalk)

Haze (many others)
Butterfly
(MSN)

...

work entirely with meta-contacts and ignore the underlying contacts. For use
cases requiring service-specific functionality, such as initiating an audio call with a
Telepathy contact, applications can iterate through a meta-contact's sub-contacts.

Additionally, applications can access contacts for each user account. Each account
has a corresponding contact store containing only the contacts for that account.
So, an application could be written to display only contacts from single account or
service provider at a time (ignoring any parent meta-contacts if it instead wishes
to work in terms of service contacts).

7 USER INTERFACES
As Folks and Telepathy are a set of libraries and low-level services, they do not
provide user interfaces. There exist a few open source, actively-maintained
applications based upon Folks and Telepathy:

◦ Gnome Contacts – an “address book” application which supports
contact management and searching

◦ Empathy – a chat application which provides a chat-style contact list
and both audio/video call and chat handler programs

Together, these components provide most contact functionality we expect Bosch
and its clients will need, including:

◦ Adding new contacts
◦ Editing or removing contacts
◦ Browsing/searching through contacts
◦ Importing contacts from a Bluetooth-paired phone
◦ Initiating and accepting incoming phone calls

However, these applications are designed for use on a typical desktop
environment and do not suit the needs of an in-vehicle infotainment user
experience. We recommend Bosch examine these applications as real-world
examples of contact applications which use the components we recommend for
the SAC contacts system.

8 MULTIPLE USERS
Each user in the system will have their own contacts database, chat/VoIP
accounts, and web service accounts. Changes by one user will not affect the
contacts or accounts of another user.

9 STORAGE CONSIDERATIONS
The storage requirements for our proposed contacts system will be very modest.
Storage of local address book contacts should be under a few megabytes for even
large sets of contacts with up to several megabytes of storage for contacts'
avatars.

These storage requirements do not factor in files received from contacts.

10 ABSTRACTING CONTACTS LIBRARIES
In general, Collabora discourages direct, complete abstractions of libraries
because the resulting library tends to have fewer features, more bugs, and gives
its users less control than the libraries it's meant to abstract. Particularly, when
abstracting two similar libraries, the resultant library contains the “least common
denominator” of the original libraries' features.

However, partial-abstraction “utility” libraries which simplify common use
patterns can prove useful for limited domains. For instance, if many applications
required the ability to simply play an audio file without extended multimedia
capabilities, a utility library could dramatically simplify the API for these
applications.

As such, Collabora recommends against abstracting Folks or Zeitgeist on a per-
component basis as they are designed to be relatively easy to integrate into
applications. But, for example, it would make sense for Bosch to create a library or
two which provide widgets based upon these libraries. This could create a contact
selector widget based on top of Folks, allowing applications to prompt the user to
pick a contact with only a small amount of code.

Another recommended widget to add to such a library is a “type-ahead” contact
selector as is common in many email applications. As the user types into a “To:”
entry field, the widget would the Folks search capabilities to return a list of
suggestions for the user to select from.

	Document Change Log
	1 Introduction
	2 Integrated Address Book Versus Alternative Solutions
	3 Contact Sources
	3.1 Local Sources
	3.2 Bluetooth-paired phone
	3.2.1 Synchronization

	3.3 Chat and Voice-over-IP Services
	3.4 Web services
	3.5 SIM Card
	3.6 Read-only Operation for External Sources

	4 Standard Behavior and Operations
	4.1 Contact Management
	4.2 Contact Aggregation and Linking
	4.3 Local Address Book Management
	4.4 Search
	4.4.1 Sorting and Pagination

	4.5 Event Logging
	4.5.1 Out of Scope

	4.6 Caching
	4.6.1 Opportunistic Caching
	4.6.2 Open Questions

	5 Components
	5.1 Folks
	5.1.1 Bindings
	5.1.2 Required work
	5.1.3 Out of scope

	5.2 Telepathy
	5.3 Evolution Data Server (EDS)
	5.4 libsocialweb
	5.5 SyncEvolution
	5.6 Zeitgeist
	5.6.1 Required Work

	6 Architecture
	6.1 Accessibility of Contacts By Source

	7 User interfaces
	8 Multiple Users
	9 Storage considerations
	10 Abstracting Contacts Libraries

