
Apertis

Clutter

Design

Author: Tomeu Vizoso
Contributors: Sjoerd Simmons
Version: 0.5.2
Status: Final
Date: 16 November 2015
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.5.2 2015-11-16 • Update project name to Apertis
• Replace Secure Automotive Cloud with Apertis
• Fix links to wiki.gnome.org
• Delete obsolete document properties
• Improve wording

0.5.1 2014-12-10 • Updated to new template

0.5.0 2013-01-15 • Update to reflect the current state of multi-touch in Mutter
• Make a bit clearer why we don't recommend for apps to

be listening for events before ownership is known
• Add event flow diagram that illustrates touch event

handling in the compositor
• Explain how the “busy” indicator window can get out of the

way of event handling
• Explain how application windows can “steal” gestures

from system windows such as panels.
• Update section about out-of-screen events.

0.4.0 2012-07-06 • Clarify the origin of the suggestion of limiting system-wide
gestures to 4 or more fingers.

• Added a note about having jitter-reduction in the X.Org
evdev input driver

• Investigate forwarding zoom events to Google Earth
without a pre-defined approach

• Make more explicit that new gestures can be implemented
without modifying Clutter

• Make more explicit that a document will be written about
Mx widget design and performance

• Add a document to be written about writing applications
with replaceable Uis

• Mention that the document about best practices in
gestures design will compare with iOS and Android

• Add a list of subjects to have covered in the Mx widget
design document

0.3.0 2012-05-23 • Bump version number and publish

0.2.2 2012-05-18 • Make explicit in 2.2.1 that new gestures can be
implemented using the Clutter gesture framework

• Mention in 2.2.2 that applications can choose to either
wait until the compositor has rejected ownership of a MT
sequence, or get the events straight away

• Explain why recognizing gestures in parallel might not be
a good idea

• Add Documentation section

• Add Design notes section
• Remove note about the risk associated to the touchscreen

driver

0.2.1 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.2.0 2012-04-24 • Explain how actors can react to events outside its screen
area: 2.5

• Mention that Mutter currently lacks MT support
• Moved WebGL chapter to WebKit design

0.1.1 2012-03-22 Merge suggestions from Gustavo Noronha Silva

0.1.0 2012-03-21 Initial revision

Table of Contents
Document Change Log...2
1 Introduction...5
2 Multi-touch..6

2.1 The multi-touch stack...6
2.2 Requirements...8

2.2.1 Multitouch event handing in Clutter applications....................................8
2.2.2 Full-screen event handing in applications...9
2.2.3 Multi-touch event handling in Mutter..9
2.2.4 Multitouch event handing in web applications..9
2.2.5 Support two separate touchscreens..9
2.2.6 Support out-of-screen touch events..9
2.2.7 Actors with bigger reactive area..9

2.3 Approach..10
2.3.1 Multitouch event handing in Clutter applications..................................10
2.3.2 Full-screen event handing in applications...10
2.3.3 Multi-touch event handling in Mutter..10
2.3.4 Multi-touch event handing in web applications.....................................12
2.3.5 Support two separate touchscreens..12
2.3.6 Support out-of-screen touch events..12
2.3.7 Actors with bigger reactive area..12

2.4 Risks...13
3 Smooth panning..14

3.1 Requirements...14
3.2 Approach..14
3.3 Risks...14

4 Documentation...15
5 Design notes...16

Index of Illustrations
Illustration A: Multi-touch stack in X.Org..6
Illustration B: Event delivery..11

1 INTRODUCTION
This document explains Collabora's design about several issues related to the
main UI toolkit used in Apertis: Clutter.

2 MULTI-TOUCH
This section describes the support for multi-touch (MT) events and gestures in the
Apertis middle-ware. It will be explained which requirements Collabora will
support and the general architecture of MT on Linux and X.Org.

When we mention MT in this document, we refer to the ability of applications to
react to multiple touch event streams at the same time. By gestures, we refer to
the higher-level abstraction that groups individual touch events in a single
meaningful event.

At this point of time (Q1 2012), MT and gesture functionality is implemented in
several consumer products but is only starting to be available in frameworks of
general availability such as X.Org and HTML. As will be explained later, this is
reflected in X.Org just being released with MT functionality1, Clutter not having MT
support in a release yet, and the lack of high level gesture support in X.Org-based
toolkits. In the same vein, MT is not yet standardized in the web. This design will
discuss the challenges posed by these facts and ways of overcoming them.

2.1 THE MULTI-TOUCH STACK

For the purposes of this document, the MT stack on X.Org is layered as follows:

Illustration A:
Multi-touch
stack in X.Org

Compositor

The compositor has to be able to react to gestures that may happen anywhere in
the display. The X server usually delivers events to the window where they
happen, so the compositor overrides this behavior by telling the X server that it

1 http://lists.x.org/archives/xorg-announce/2012-March/001846.html

http://lists.x.org/archives/xorg-announce/2012-March/001846.html

has interest in all events regardless of where they happen (specifically, it does so
by registering a passive grab on the root window).

The compositor will receive all events and decide for each whether it should be
handled at this level, or let it pass through to the application to which the
underlying window belongs.

For touch events, this isn't done for individual events but rather for touch
sequences. A touch sequence is the series of touch events that starts when a
finger is placed on the screen, and finished when it is lifted. Thus, a touch
sequence belongs to a single finger, and a gesture can be composed by as many
touch sequences as fingers are involved.

There is a period of time during which the compositor inspects the touch events
as they come and decides whether it should handle this particular gesture, or if it
should be ignored and passed to the application. If the compositor decides the
later, the events that had been already delivered to the compositor will be
replayed to the application.

The period of time that the compositor needs to decide whether a gesture should
be handled by applications should be as small as possible, in order to not disrupt
the user experience.

An application can tell the X server that it doesn't want to have to wait until the
compositor has let the touch sequence pass. In that case, either the gesture
shouldn't cause any visible effects in the UI, or should be reverted in case the
compositor ends up deciding to handle the touch sequence by itself.

Applications

Widgets inside applications can react to MT events in a way similar to how they
react to single-touch events. Additionally, some toolkits provide additional
functionality that make it easier to react to gestures. Widgets can either react to a
few predefined gestures (tap, panning, pinch, etc.), or they can implement their
own gesture recognizers by means of the lower level MT events.

UI toolkits

As mentioned before, UI toolkits provide API for reacting to MT events and usually
also functionality related to gestures. Because MT is so new to X.Org, UI toolkits
based on X.Org don't implement yet everything that applications would need
regarding MT and gestures, so for now additional work needs to happen at the
application level.

libXi

This library allow toolkits to communicate with the XInput extension in the X.Org
server. Communication with the X.Org server is asynchronous and complex, so
having a higher level library simplifies this interaction.

X.Org server

The X.Org server delivers input events to each application based on the
coordinates of the event and the placement of the application windows.

evdev X.Org input driver

This input driver for X.Org uses udev to discover devices and evdev to get input
events from the kernel and posts them to the X.Org server.

If it is needed to apply a jitter-reduction filter and it's impossible to do so in the
kernel device driver, then we recommend to patch the evdev X.Org input driver.

MTDev

For device drivers that use the legacy MT protocol as opposed to the new slots
protocol, the X.Org input driver will use libmtdev to translate events from the old
protocol (type A) to the new one (type B)2.

Kernel event driver (evdev)

This kernel module will emit input events in a protocol that the evdev X.Org input
driver can understand.

Kernel device driver

This kernel module is hardware-dependent and will interface with the hardware
and pass input events to the evdev event driver.

2.2 REQUIREMENTS

2.2.1 MULTITOUCH EVENT HANDING IN CLUTTER APPLICATIONS

Clutter will have APIs for reacting to multi-touch input events and for recognizing
gestures.

The Apertis middleware will have the support that Clutter requires to provide MT
and gestures functionality, as described later in this document.

Though it is expected that Clutter will eventually provide support for recognizing a
few basic gestures such as taps and panning, more advanced gestures will have
to be implemented outside Clutter. In the Apertis case, recognizing additional
gestures will have to be done by the applications themselves or by the SDK API.

New gestures will be developed using the gesture framework in Clutter, regardless
of whether the gesture recognition is implemented in the SDK, compositor or
applications. In other words, new gestures can be developed making use of the
Clutter API, but the code that implements them can belong to applications,
compositors or libraries. No modifications to Clutter are required to implement
new gestures.

2 http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt

http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt

2.2.2 FULL-SCREEN EVENT HANDING IN APPLICATIONS

Applications should be able to handle events anywhere in the screen even if their
windows don't cover the whole of it. For example, there may be windows
belonging to the system such as a launcher panel or a status bar in the screen,
but a gesture that starts in one of the auxiliary windows should be handled by the
focused application.

2.2.3 MULTI-TOUCH EVENT HANDLING IN MUTTER

The compositor based on Mutter will be able to react to multi-touch input events
and recognize gestures using the same Clutter API as applications.

The compositor will be able to register for MT sequences before applications get
them, so it can claim ownership over them in case a system-wide gesture is
detected. Even then, applications will be able to get all events that happen in
their windows though care needs to be taken in case the compositor ends up
claiming ownership.

2.2.4 MULTITOUCH EVENT HANDING IN WEB APPLICATIONS

Although there are no approved specifications yet on how browsers should expose
MT events to web content, some browsers have started already to provide
experimental APIs and some websites are using them. Most notable are the Safari
browser on iOS and websites that target specifically iPhone and iPad devices,
though nowadays other WebKit-based browsers implement MT events and more
websites are starting to use them.

A spec3 is being drafted by the W3C on base on the WebKit implementation, but
attention must be paid to the fact that because it's still a draft, it may change in
ways that are incompatible with WebKit's implementation and the later may not
always be in sync with the spec.

2.2.5 SUPPORT TWO SEPARATE TOUCHSCREENS

The Apertis middleware will be able to drive two screens, each with multi-touch
support.

2.2.6 SUPPORT OUT-OF-SCREEN TOUCH EVENTS

The reactive area of the touchscreen may extend past the display and the user
will be able to interact with out-of-screen UI elements.

2.2.7 ACTORS WITH BIGGER REACTIVE AREA

So the UI is more tolerant to erratic touch events (caused for example by a bumpy
road), some actors will be reactive past the boundaries of their representation in
the screen.

3 http://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html

http://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html

2.3 APPROACH

2.3.1 MULTITOUCH EVENT HANDING IN CLUTTER APPLICATIONS

MT support in X.Org is very recent, so Collabora will have to update several
components (mainly belonging to X) in the stack because Precise is not going to
ship with the versions that are needed.

Clutter 1.8 had support for single-touch gestures. In 1.10, support for multi-touch
event handling landed, and it is expected that for 1.12 (August 2012), support for
multi-touch gestures will be added. It's also planned to have support for rotation
and pinch gestures in Clutter 1.124.

2.3.2 FULL-SCREEN EVENT HANDING IN APPLICATIONS

In order for applications to be able to handle events anywhere in the screen even
if their windows do not cover the whole of it, applications will have to set grabs on
the other visible windows, even if they don't belong to the application process.

So in the case that the currently-focused application is displayed along with a
launcher panel and a status bar, the application process should set a grab on
those windows for the events that it is interested in. When another application
becomes focused, the first one releases the grab and the second takes it.

In order to make sure that the second application takes the grab as soon as
possible, it should try calling XIGrabTouchBegin repeatedly until it stops failing
with BadAccess (this will happen once the previously focused application has
removed its grab).

So the compositor can still handle system-level gestures as explained in 2.3.3, it
will have to set a grab on an invisible window that is the parent of each additional
window.

This is so complex because this scenario is a bit removed from the design of event
delivery in X. In Wayland, as the compositor is also the display server and has
total control over event delivery, it could redirect events to application windows
instead of to the panels.

2.3.3 MULTI-TOUCH EVENT HANDLING IN MUTTER

Current releases of Mutter use XLib for event management, which doesn't support
multi-touch. To Collabora's knowledge, there aren't as of yet any Mutter-based
products that make use of system-wide multi-touch gestures5.

Collabora has modified6 Mutter to allow plugins to register for touch events and to
pass them to Clutter so subclasses of ClutterGestureAction can be used.

Though applications are able to start receiving MT events even before the
compositor rejects ownership, Collabora recommends that applications don't do
that and instead that all efforts are directed towards having the compositor

4 http://wiki.clutter-project.org/wiki/ClutterRoadMap#1.12
5 https:// wiki .gnome.org/GnomeOS/Design/Whiteboards/Touchscreen#Mutter_problems
6 http://blog.tomeuvizoso.net/2012/09/multi-touch-gestures-in-gnome-shell.html

http://blog.tomeuvizoso.net/2012/09/multi-touch-gestures-in-gnome-shell.html
https://live.gnome.org/GnomeOS/Design/Whiteboards/Touchscreen#Mutter_problems
https://live.gnome.org/GnomeOS/Design/Whiteboards/Touchscreen#Mutter_problems
https://live.gnome.org/GnomeOS/Design/Whiteboards/Touchscreen#Mutter_problems
http://wiki.clutter-project.org/wiki/ClutterRoadMap#1.12

recognize gestures as fast as possible.

Otherwise, it will be very hard to avoid glitches in the user experience when the
compositor decides to handle a gesture and the application already started to
react to it.

By limiting system-wide gestures to those with 4 or 5 fingers as iOS 5 does (what
Apple calls multitasking gestures), the compositor should be able to decide
whether to take ownership of a MT sequence with a minimal delay and without
applications having to do anything on their side. Gestures with less than 4 fingers
will be considered as intended for applications and the compositor will decline
ownership immediately.

This diagram illustrates how the different components interact when handling
touch events:

Illustration B: Event delivery

If there is a window that gets placed on top of the others (specifically, the “busy”
indicator animation) and it shouldn't get any events, it can be marked as such
with the XShapeCombineRegion call, passing an empty region and the ShapeInput
destKind7. This way, any events that the compositor doesn't intercept will be
delivered to the currently-focused application.

2.3.4 MULTI-TOUCH EVENT HANDING IN WEB APPLICATIONS

Collabora will implement the port specific bits of MT in WebKit-Clutter to ensure
that it has state-of-the-art WebKit MT support, but won't be changing the behavior
of the generic WebKit implementation nor working on the specification level.

Collabora won't be implementing any high-level gesture support because they are
far from being specified and its support in browsers is very experimental.

2.3.5 SUPPORT TWO SEPARATE TOUCHSCREENS

There is support in X.Org for arbitrarily matching input devices to screens, though
the configuration isn't straightforward8. Collabora will test the simultaneous
support of 2 touch-screens and produce documentation about how to configure
X.Org in this regard during the development phase of the project.

2.3.6 SUPPORT OUT-OF-SCREEN TOUCH EVENTS

Regarding out-of-screen events support, we propose writing a daemon that listens
for events from the touchscreen kernel driver and that, based on its configuration,
translates those to key presses for special key codes that correspond to each
button.

As the X evdev driver will also get those events, it has to be configured to ignore
touch events outside the screen area.

In the SDK, a wrapper around Xephyr will be provided that synthesizes key events
when buttons around the Xephyr screen are pressed, simulating the ones in the
real hardware.

2.3.7 ACTORS WITH BIGGER REACTIVE AREA

Clutter actors tell the Clutter framework in which area of the screen they are
sensitive to pointer events. This area usually matches the area that the actor uses
to display itself, but the actor could choose to mark a bigger area as its reactive
area.

Though the Clutter maintainer has recommended this approach, he warns that the
optimization that culls actors based on their paint volumes might get in the way in
this case.

Collabora will verify that this works and communicate with the upstream
community in case any problem is discovered.

7 http://article.gmane.org/gmane.comp.kde.devel.kwin/19992
8 http://www.x.org/wiki/XInputCoordinateTransformationMatrixUsage

http://www.x.org/wiki/XInputCoordinateTransformationMatrixUsage
http://article.gmane.org/gmane.comp.kde.devel.kwin/19992

2.4 RISKS

The DDX9 driver provided by the hardware vendor should support having a frame-
buffer that is bigger than the actual display resolution, for the out-of-screen touch
events.

9 http://dri.freedesktop.org/wiki/DDX

http://dri.freedesktop.org/wiki/DDX

3 SMOOTH PANNING
This section proposes an improvement to the kinetic scrolling functionality in Mx
so that panning is smooth even when the input device's resolution is very low.
This is going to affect only to Clutter applications that use MxKineticScrollView as
the container of scrollable areas.

The problem with input devices with low resolution is that as the finger moves
during panning, the motion events received by the application are similarly low-
resolution (i.e., occurring infrequently). Given that Mx currently updates the
position in the scrolled view to match the position of the finger, the panning
movement appears "jumpy".

3.1 REQUIREMENTS

When panning, the position in the scrolled view will smoothly interpolate to the
last finger position, instead of jumping there straight away. The visual effect would
be that of the scroll position lagging slightly behind the finger. The lower the
resolution of the touch screen, the bigger the lag.

3.2 APPROACH

Collabora will rewrite the part of the MxKineticScrollView10 widget that tracks the
finger position when panning, ideally using the function
mx_adjustment_interpolate11 to animate the movement along the path between
the current position and the finger position. The time function (ClutterAlpha12)
used in the interpolation animation will be configurable, as well as the speed at
which the scrolling position will follow the finger.

3.3 RISKS

Upstream could decide to reject this feature when it is proposed for inclusion
because of the substantial added complexity to a widget (MxKineticScrollView)
that is already pretty complex. However, preliminary discussions with the Mx
maintainers show that they are interested in gaining this functionality.

Another risk is Intel not funding all the work in Clutter that it has committed to. In
that case, Collabora may need to do the work.

10http://docs.clutter-project.org/docs/mx/stable/MxKineticScrollView.html
11http://docs.clutter-project.org/docs/mx/stable/MxAdjustment.html#mx-adjustment-interpolate
12http://developer.gnome.org/clutter/stable/ClutterAlpha.html

http://developer.gnome.org/clutter/stable/ClutterAlpha.html
http://docs.clutter-project.org/docs/mx/stable/MxAdjustment.html#mx-adjustment-interpolate
http://docs.clutter-project.org/docs/mx/stable/MxKineticScrollView.html

4 DOCUMENTATION
The following items have been identified for future documentation work later in
the project:

• Add a section to the Clutter Cookbook about implementing a
ClutterGestureAction subclass.

• Best practices about MT gestures in user experience, both system-wide
and application gestures. Compare these guidelines with the equivalent
ones in iOS and Android.

• Best practices about performance with Clutter and Mx (including how to
write containers which are responsive independently of the number of
children and how to drag actors across the screen).

• Best practices about using and writing reusable UI components (including
Mx widgets), and explicitly these subjects (to be specified further at a
later stage):

• Panning actors

• Finger moves outside the “active area” of an actor (e.g., moving
button of timeline in video very fast)

• Snap forward/backward to final position

• Expand/shrink of groups (sliding)

• Best practices about writing applications in which functionality and UI are
separate, so derivatives can be written by replacing the UI and without
having to modify the rest of the application.

5 DESIGN NOTES
The following items have been identified for future investigation and design work
later in the project and are thus not addressed in this design:

• Support two separate touchscreens

• Support out-of-screen touch events

• Implement jitter reduction (there already has an algorithm), taking into
account that the input driver may be a binary blob

• Implement zoom via pitch gestures in Google Earth without having access
to its source code

	Document Change Log
	1 Introduction
	2 Multi-touch
	2.1 The multi-touch stack
	Compositor
	Applications
	UI toolkits
	libXi
	X.Org server
	evdev X.Org input driver
	MTDev
	Kernel event driver (evdev)
	Kernel device driver

	2.2 Requirements
	2.2.1 Multitouch event handing in Clutter applications
	2.2.2 Full-screen event handing in applications
	2.2.3 Multi-touch event handling in Mutter
	2.2.4 Multitouch event handing in web applications
	2.2.5 Support two separate touchscreens
	2.2.6 Support out-of-screen touch events
	2.2.7 Actors with bigger reactive area

	2.3 Approach
	2.3.1 Multitouch event handing in Clutter applications
	2.3.2 Full-screen event handing in applications
	2.3.3 Multi-touch event handling in Mutter
	2.3.4 Multi-touch event handing in web applications
	2.3.5 Support two separate touchscreens
	2.3.6 Support out-of-screen touch events
	2.3.7 Actors with bigger reactive area

	2.4 Risks

	3 Smooth panning
	3.1 Requirements
	3.2 Approach
	3.3 Risks

	4 Documentation
	5 Design notes

