
Secure
Automated Cloud

Connectivity

Documentation

Author: Gustavo Padovan
Contributors:
Version: 0.2.3
Status: Final
Date: 05 December 2014
Last Reviewer: Jeremy Whiting

This proposal was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.2.3 2014-12-06 Changed document template

0.2.2 2013-09-05 Reviewed Telepathy and Folks sections; made stylistic
and grammatical changes

0.1.0 2012-08-15 Initial revision

Table of Contents
Document Change Log...2
1. Writing ConnMan plugins...4
2. Customs ConnMan Session policies...5
3. Management of ConnMan Sessions...6
4. WiFi radio start up behavior on ConnMan..7
5. Supporting new data modems in oFono...8
6. Writing new Telepathy Connection Managers..9

6.1 Looking inside the telepathy-rakia code...10
6.1.1 Source files..10
6.1.2 sofia-sip...11
6.1.3 Connection Manager and creating connections.....................................11
6.1.4 Channels and Calls..13

7. Writing new Folks backends...15

1. WRITING CONNMAN PLUGINS
The plugin documentation in ConnMan was improved and submitted upstream.
The documentation about writing plugins ca be found on ConnMan sources in the
following files: doc/plugin-api.txt, src/device.c and src/network.c. Example plugins
are plugins/bluetooth.c plugins/wifi.c, plugins/ofono.c, among others.

2. CUSTOMS CONNMAN SESSION POLICIES
The documentation to create Session policies files for specifics users and/or
groups can be found in ConnMan sources doc/session-policy-format.txt. The
policies files shall be placed in STORAGEDIR/session_policy_local directory, where
STORAGEDIR by default points to /var/lib/connman. ConnMan can recognize
changes to this directory during runtime and update Session policies accordingly.

3. MANAGEMENT OF CONNMAN SESSIONS
ConnMan provides a extensive API to manage the creation, configuration and
removal of a session, doc/manager-api.txt details how to create and destroy a
Section through the CreateSession() and DestroySession() methods. doc/session-
api.txt details how to use a Session. Through this API an application can ask
ConnMan to Connect/Disconnect a Session or change its settings. The Settings
can also be changed by writing policies files as described in the previous topic.

The application requesting a Session needs to implement a Notification API to
receive updates in the Session settings, such as when a Session becomes online.
This is done via the Update() method.

See also doc/session-overview.txt.

The difference between using the Session API and the policy files in
/var/lib/connman is that policy files can set policies to many sessions at the same
time, based on user/group ID or SELINUX rules while Session API only changes one
session at a time.

4. WIFI RADIO START UP BEHAVIOR ON CONNMAN
At the very first run ConnMan has the WiFi radio disabled by default, however
sometimes it is important to have the radio enabled even in the first ConnMan
run. To achieve this behavior ConnMan can be configured to enable the radio on it
first run.

The file STORAGEDIR/settings, where STORAGEDIR by default points to
/var/lib/connman, shall be edited, or even created, to have the following content:

[WiFi]

Enable=true

This configuration will tell ConnMan at start up to enable the WiFi radio.

5. SUPPORTING NEW DATA MODEMS IN OFONO
oFono has a great support for most of the modems out there in the market,
however some new modem may not work out-of-the-box, in this case we need to
fix oFono to recognize and handle the new modem properly. There are a couple of
different causes why a modem does not work with oFono. In this section we will
detail them and show how oFono can be fixed.

• Modem match failure: if the udevng plugin in oFono fails to match the
new modem its code needs to be fixed to recognize the new modem. This
kind of failure can be recognized by looking at the debug output of the
udevng plugin (debug output is enabled when running ofonod with the '-d'
option). If udevng doesn't say anything about the new modem then it
needs proper code to handle it. You can find a example on how to edit
plugins/udevng.c to support a new modem in oFono git1. The oFono git
history has many examples of patches to add support to new modems in
plugins/udevng.c

• Some other modems does not implement the specifications properly and
thus oFono needs to implement 'quirks' to have these modems working
properly. Many examples of fixes can be found on oFono git23.

It is difficult to foresee the problems that can happen when trying a new modem
due to the extensive number of commands and specifications oFono implements.
Asking the oFono community4 could be very helpful to solve any issue with a new
modem.

1 https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?
id=4cabdedafdc241706e342720a20bdfe3828dfadf

2 https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?
id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d

3 https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?
id=535ff69deddda292c7047620dc11336dfb480a0d

4 https://ofono.org/community

https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=4cabdedafdc241706e342720a20bdfe3828dfadf
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=4cabdedafdc241706e342720a20bdfe3828dfadf
https://ofono.org/community
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=535ff69deddda292c7047620dc11336dfb480a0d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=535ff69deddda292c7047620dc11336dfb480a0d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d

6. WRITING NEW TELEPATHY CONNECTION MANAGERS
New connection managers are implemented as separated component and have
their own process. Telepathy defines the D-Bus interfaces5 that each Connection
Manager (CM) needs to implement. This is known as the Telepathy Specification.

The Connection Managers need to expose a bus name in D-Bus that begins with
org.freedesktop.Telepathy.ConnectionManager, for example, the telepathy-gabble
CM, has the org.freedesktop.Telepathy.ConnectionManager.gabble bus name to
provide its XMPP protocol interfaces.

A client that wants to talk to the available Connection Managers in the D-Bus
Session bus needs to call D-Bus ListActivatableNames method and search for
names with the returned prefix.

The most important Interfaces that a Connection Manager needs to implement are
ConnectionManager, Connection and Channel. The ConnectionManager handles
creation and destruction of Connection object. A Connection object represents a
connected protocol session, such as a XMPP session. Within a Connection many
Channel objects can be created; they are used for communication between the
application and the server providing the protocol service. A Channel can represent
many different types of communications such as files transfers, incoming and
outcoming messages, contact search, etc.

Another important concept is the Handle6. It is basically a numeric ID to represent
various protocol resources, such as contacts, chatrooms, contact lists and user-
defined groups.

The Telepathy Developer's Manual7 details how to use the Telepathy API and thus
gives many suggestions of how those should be implemented by a new
Connection Manager.

Studying the code of existing Connection Managers is informative when
implementing a new one. Two good examples are telepathy-gabble8 for the XMPP
protocol or telepathy-rakia9 for the SIP implementation.

Those Connection Managers use Telepathy-GLib10 as a framework to implement
the Telepathy Specification. The Telepathy-GLib repository has a few examples11 of
its usage.

It is strongly recommend to use Telepathy-GLib when implementing any new
connection manager. The Telepathy-GLib service-side API is only available in C,
but can also be access from other languages that can embed C, such as C++.
This library is fully documented12.

5 http://telepathy.freedesktop.org/spec/
6 http://telepathy.freedesktop.org/doc/book/sect.basics.handles.html
7 http://telepathy.freedesktop.org/doc/book/
8 http://cgit.freedesktop.org/telepathy/telepathy-gabble/
9 http://cgit.freedesktop.org/telepathy/telepathy-rakia/
10http://cgit.freedesktop.org/telepathy/telepathy-glib/
11http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
12http://telepathy.freedesktop.org/doc/telepathy-glib/

http://telepathy.freedesktop.org/doc/telepathy-glib/
http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
http://cgit.freedesktop.org/telepathy/telepathy-glib/
http://cgit.freedesktop.org/telepathy/telepathy-rakia/
http://cgit.freedesktop.org/telepathy/telepathy-gabble/
http://telepathy.freedesktop.org/doc/book/
http://telepathy.freedesktop.org/doc/book/sect.basics.handles.html
http://telepathy.freedesktop.org/spec/

6.1 LOOKING INSIDE THE TELEPATHY-RAKIA CODE

To start, a small design document can be found at docs/design.txt in telepathy-
rakia sources. However, some parts of it are outdated.

6.1.1 SOURCE FILES

• src/telepathy-rakia.c: this is the starting point of telepathy-rakia as it
instantiates its ConnectionManager.

• src/sip-connection-manager.[ch]: defines the ConnectionManagerClass
and requests the creation of a Protocol of type TpBaseProtocol.

• src/protocol.[ch]: defines the RakiaProtocolClass which creates the
TpBaseProtocol object. The protocol is responsible for starting new
Connections. The request arrives via D-Bus and arrives here through
Telepathy-GLib.

• src/sip-connection.c: defines the RakiaConnectionClass which inherits
from RakiaBaseConnectionClass. The latter inherits from
TpBaseConnectionClass.

• src/sip-connection-helpers.[ch]: helper routines used by RakiaConnection

• src/sip-connection-private.h: private structures for RakiaConnection

• src/write-mgr-file.c: utility to produce manager files

• rakia/base-connection.[ch]: base class for RakiaConnectionClass. It
implements its parent, RakiaBaseConnectionClass

• rakia/base-connection-sofia.[ch]: Implements a callback to handle events
from the SIP stack.

• rakia/text-manager.[ch]: defines RakiaTextManagerClass, to manage the
RakiaTextChannel.

• rakia/text-channel.[ch]: defines RakiaTextChannelClass. This is a
Telepathy Channel.

• rakia/media-manager.[ch]: defines RakiaMediaManagerClass. Handles the
RakiaSipSession.

• rakia/sip-session.[ch]: defines RakiaSipSessionClass; it relates directly to
the definition of Session in the SIP specifcation.

• rakia/call-channel.[ch]: defines RakiaCallChannelClass. The object is
created when an incoming calls arrives or an outgoing call is placed. A
RakiaCallChannel belongs to one RakiaSipSession.

• rakia/sip-media.[ch]: defines RakiaSipMediaClass. It is created
immediately after a RakiaCallChannel is created. Can represent audio or
video content.

• rakia/call-content.[ch]: defines RakiaCallContentClass. The object is
created for each new medium added. It relates directly to the Content

definition in the Telepathy specification. It could be an audio or video
Content, it is matched one-to-one with a RakiaSipMedia object.

• rakia/call-stream.[ch]: defines the RakiaCallStreamClass. It could be an
audio or video object. The object is created by RakiaCallContent.

• rakia/codec-param-formats.[ch]: helper to setting codecs parameters.

• rakia/connection-aliasing.[ch]: defines function for aliasing Connections.

• rakia/debug.[ch]: debug helpers

• rakia/event-target.[ch]: helper to listen for events for a NUA handle (see
NUA definition in sofia-sip documentation).

• rakia/handles.[ch]: helpers for Handles.

• rakia/sofia-decls.h: some extra declaration

• rakia/util.[ch]: utility functions.

6.1.2 SOFIA-SIP

sofia-sip13 is a User-Agent library that implements the SIP protocol as described in
IETF RFC 3261. It can be used for VoIP, IM, and many other real-time and person-
to-person communication services. telepathy-rakia makes use of sofia-sip to
implement SIP support into telepathy. sofia-sip has good documentation14 on all
concepts, events and APIs.

6.1.3 CONNECTION MANAGER AND CREATING CONNECTIONS

src/telepathy-rakia.c is the starting point of this Telepathy SIP service. Its
main() function does some of the initial setup, including D-Bus and Logging and
calls Telepathy-GLib's tp_run_connection_manager() method. The callback
passed to this method gets called and constructs a new Telepathy
ConnectionManager GObject. The Connection Manager Factory is at src/sip-
connection-manager.c.

Once the Connection Manager Object construction is finalized, the creation of a
SIP Protocol Object is triggered inside rakia_connection_manager_constructed()
by calling rakia_protocol_new(). This function is defined in src/protocol.c. It
creates a Protocol Object and adds the necessary infrastructure that a
Connection Manager needs to manage the Protocol. In the Class Factory it is
possible to see which methods are defined by this Class by looking at the
TpBaseProtocolClass base_class var:

 base_class->get_parameters = get_parameters;

 base_class->new_connection = new_connection;

 base_class->normalize_contact = normalize_contact;

13http://sofia-sip.sourceforge.net/
14http://sofia-sip.sourceforge.net/refdocs/nua/

http://sofia-sip.sourceforge.net/refdocs/nua/
http://sofia-sip.sourceforge.net/

 base_class->identify_account = identify_account;

 base_class->get_interfaces = get_interfaces;

 base_class->get_connection_details = get_connection_details;

 base_class->dup_authentication_types = dup_authentication_types;

Documentation on each method of this class can be found in the Telepathy-
GLib documentation for TpBaseConnectionManager15 and TpBaseProtocol16. The
Protocol is bound to ConnectionManager through the method
tp_base_connection_manager_add_protocol() .

The new_connection() method defined there is used to create a new Telepathy
Connection when the NewConnection() method on
org.freedesktop.Telepathy.ConnectionManager.rakia is called.

The Telepathy Connection object is of type RakiaConnection, which inherits
from RakiaBaseConnection, which in turn inherits from TpBaseConection. The
methods used by RakiaConnection can be seen at the RakiaConnectionClass
and RakiaBaseConnectionClass initializations. They are defined at src/sip-
connection.c for the RakiaBaseConnecionClass:

 sip_class->create_handle = rakia_connection_create_nua_handle;

 sip_class->add_auth_handler = rakia_connection_add_auth_handler;

and for the TpBaseConnectionClass:

 base_class->create_handle_repos = rakia_create_handle_repos;

 base_class->get_unique_connection_name =
rakia_connection_unique_name;

 base_class->create_channel_managers =

 rakia_connection_create_channel_managers;

 base_class->create_channel_factories = NULL;

 base_class->disconnected = rakia_connection_disconnected;

 base_class->start_connecting =
rakia_connection_start_connecting;

 base_class->shut_down = rakia_connection_shut_down;

 base_class->interfaces_always_present =
interfaces_always_present;

During the TpBaseConnection object construction the
create_channel_managers() method is called. A Channel is an entity provided
by a Connection to allow the communication between the local
ConnectionManager and the remote server providing the service. A Channel
can represent an incoming or outgoing IM message, a file transfer, a video call,

15http://telepathy.freedesktop.org/doc/telepathy-glib/TpBaseConnectionManager.html
16http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html

http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html
http://telepathy.freedesktop.org/doc/telepathy-glib/TpBaseConnectionManager.html

etc. Many Channels can exist at a given time.

6.1.4 CHANNELS AND CALLS

telepathy-rakia has two types of Channels: Text and Call. For TextChannels a
RakiaTextManager objects is created. It inherits from TpChannelManager.
TpChannelManager is a generic type used by all types of Channels. See
rakia/text-manager.c for the RakiaTextManagerClass definitions. When
constructed, in rakia_text_manager_constructed(), the object sets the
connection_status_changed_cb callback to get notified about Connection status
changes. If the Connection status changes to Connected, the callback is
activated and the code sets yet another callback, rakia_nua_i_message_cb. This
callback is connected to nua-event from sofia-sip. This callback is responsible
for managing an incoming message request from the remote server.

The callback then handles the message it receives through the Connection
using the sofia-sip library. At the end of the function the following code can be
found:

 channel = rakia_text_manager_lookup_channel (fac, handle);

 if (!channel)

 channel = rakia_text_manager_new_channel (fac,

 handle, handle, NULL);

 rakia_text_channel_receive (channel, sip, handle, text, len);

The RakiaTextManager tries to figure if an existing Channel for this message
already exists, or if a new one needs to be created. Once the channel is found
or created, RakiaTextManager is notified of the received message through
rakia_text_channel_receive() which creates a TpMessage to wrap the received
message.

A similar process happens with the similar RakiaMediaManager which handles
SIP Sessions and Call Channels. The callback registered by RakiaMediaManager
is rakia_nua_i_invite_cb(), in rakia/media-manager.c, it then can get notified of
incoming invites to create a SIP Session. Once the callback is activated, which
means when an incoming request to create a SIP Session arrives, a new
RakiaSipSession is created. Outgoing requests to create a SIP session
RakiaSipSession are initiated on the telepathy-rakia side through the exposed
D-Bus interface. The request comes from the TpChannelManager object and is
created by rakia_media_manager_requestotron() in the end of its call
chain:

static void

channel_manager_iface_init (gpointer g_iface,

 gpointer iface_data)

{

 TpChannelManagerIface *iface = g_iface;

 iface->foreach_channel = rakia_media_manager_foreach_channel;

 iface->type_foreach_channel_class =

 rakia_media_manager_type_foreach_channel_class;

 iface->request_channel = rakia_media_manager_request_channel;

 iface->create_channel = rakia_media_manager_create_channel;

 iface->ensure_channel = rakia_media_manager_ensure_channel;

}

Here in channel_manager_iface_init(), telepathy-rakia sets which method it
wants to be called when the D-Bus methods17 exposed by Telepathy-GLib are
called. These functions handle Channel creation; however, they must first
create a SIP Session before creating the Channel itself. The RakiaSipSession
object will handle the Channels between the remote server and telepathy-rakia.

In the incoming path besides of creating a new SIP session the
rakia_nua_i_invite_cb callback also sets a new callback incoming_call_cb, that
as it name says get called when a new call arrives.

CallChannels, implemented as RakiaCallChannel in telepathy-rakia, are then
created once this callback is activated or, for outgoing call channels requests,
just after the RakiaSipSession is created. See the calls to new_call_channel()
inside rakia/media-manager.c for more details.

If RakiaCallChannel constructed was requested by the local user up two new
media streams would be created and added to it; the media can be audio or
video. The media streams, known as a RakiaSipMedia object, is either created
by the CallChannel constructed method if InitialAudio or InitialVideo18 is passed
or by a later call to AddContent() on the D-Bus interface
org.freedesktop.Telepathy.Channel.Type.Call1.

The creation of a Content object adds a “m=” line in the SDP in the SIP
message body. Refer to the RFC 3261 specification.

The last important concept is a CallStream, implemented here as
RakiaCallStream. A CallStream represents either a video or an audio stream to
one specific remote participant, and is created through
rakia_call_content_add_stream() every time a new Content object is created. In
telepathy-rakia each Content object only has only one Stream because only
one-to-one calls are supported .

17http://telepathy.freedesktop.org/spec/Connection_Interface_Requests.html
18http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialAudio

http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialAudio
http://telepathy.freedesktop.org/spec/Connection_Interface_Requests.html

7. WRITING NEW FOLKS BACKENDS
The Folks documentation19 on backends is fairly extensive and can help quite a lot
when writing a new backend. Each backend should provide a subclass of
Folks.Backend20. The same documentation can be found in the sources in the file
folks/backend.vala. The evolution-data-server (EDS) backend will be used as
example here due it is extensive documentation. The EDS subclass for
Folks.Backend is defined in backend/eds/eds-backend.vala in the sources.

A backend also needs to implement the Folks.Persona21 and Folks.PersonaStore22
subclassess. For EDS those are Edsf.Persona23 and Edsf.PersonaStore24, which can
also be seen in the sources in backends/eds/lib/edsf-persona.vala and
backends/eds/lib/edsf-persona-store.vala, respectively.

Persona is the representation of a single contact in a given backend, they are
stored by a PersonaStore. One backend may have many PersonaStores if they
happen to have different sources of contacts. For instance, each EDS address
book would have an associated PersonaStore to it. Personas from different
Backends that represent the same physical person are aggregated together by
Folks core as a Indivudial25.

The Telepathy backend also serves as a good example. As the EDS backend, it is
well-implemented and documented.

19https://wiki.gnome.org/Folks
20http://telepathy.freedesktop.org/doc/folks/vala/Folks.Backend.html

21http://telepathy.freedesktop.org/doc/folks/vala/Folks.Persona.html
22http://telepathy.freedesktop.org/doc/folks/vala/Folks.PersonaStore.html
23http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.Persona.html
24http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.PersonaStore.html
25http://telepathy.freedesktop.org/doc/folks/vala/Folks.Individual.html

http://telepathy.freedesktop.org/doc/folks/vala/Folks.Individual.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.Persona.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Persona.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Backend.html
https://wiki.gnome.org/Folks

	Document Change Log
	1 . Writing ConnMan plugins
	2 . Customs ConnMan Session policies
	3 . Management of ConnMan Sessions
	4 . WiFi radio start up behavior on ConnMan
	5 . Supporting new data modems in oFono
	6 . Writing new Telepathy Connection Managers
	6.1 Looking inside the telepathy-rakia code
	6.1.1 Source files
	6.1.2 sofia-sip
	6.1.3 Connection Manager and creating connections
	6.1.4 Channels and Calls

	7 . Writing new Folks backends

