
Apertis Multiuser

Design:
Transactional

Switching

Author: Simon McVittie, Gustavo Noronha, Tomeu
Visozo
Contributors: Derek Foreman
Version: 0.5.5
Status: Draft
Date: 16 November 2015
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.5.5 2015-11-16 • Remove inaccurate metadata

0.5.4 2015-10-30 • Update table of contents

0.5.3 2015-10-21 • Update references
• Add a reference to the Preferences and Persistence

design document
• Adjust wording around requirements and OEM variants

0.5.2 2015-06-23 • Remove a stray reference to nested compositors

0.5.1 2015-05-15 • Recommend a transitional compositor over nested
compositors, as in the umbrella document

• Note that touch gestures should always have feedback
• Add a fourth possible resolution for switching to an app

that the target user does not have, namely starting the
interactive installation process

0.5.0 2015-05-01 • Change name of platform to Apertis
• Refer to a separate Multiuser design document for general

multi-user, moving some use-cases there; retitle this one
to Multiuser Design: Transactional Switching

• New use-case: user switches then undoes the switch
• Distinguish between “completing” and “cancelling” the

transactional switch, with different results: “cancelling”
never transfers back state

0.4.1 2015-03-16 • Revise recommendation to distinguish between explicit
“state sending” for one foreground activity, and automatic
state saving/reloading for the session as a whole

0.4.0 2015-02-13 • Specifically mention the trivial use-case in which a
passenger uses the system on behalf of the driver without
switching to their own account

• Amend for clarified last-used-state policy: state is saved
on shutdown and loaded on startup, but neither is done
during switching

• Describe user interface considerations relevant to setting
privacy expectations

• Add comparison with Tizen 3 automotive multi-user model

0.3.5 2015-01-21 • Correct date in introduction
• Remove note about Plymouth compatibility with specific

hardware

0.3.4 2015-01-20 • Suggest additional requirement: minimize questions for
driver

• Suggest additional requirement: UI privileges are visually

obvious
• Briefly describe authentication assumptions earlier in the

document
• Discuss implications of transactional switching on last-

used mode
• Discuss an alternative model in which transactional

switching only changes superficial behaviour, not UI
privileges

• Be more general about the compositor, since most points
apply equally to non-Mutter compositors

0.3.3 2015-01-14 • Note interaction between “control returns to driver” use-
case and (absence of) state transfer between apps

• Clarify user vs. uid
• Add a use-case where the driver might expect state

transfer to the passenger but the passenger doesn't
have the app

0.3.2 2015-01-13 • Expand use-case section into a list of related use cases
for a selection of realistic applications

• Recommend not attempting to transfer state between
browsers

• Remove references to switching from ConsoleKit to
systemd as this has already been implemented

0.3.1 2014-12-15 • Updated to new template

0.3 2013-03-13 • Expand and relocate chapter that presented the use case
scenario with all recommendations applied with a final
chapter that summarizes Collabora's recommendations
and then presents the use case scenario with them
applied (4)

• Tweaked section 3.4 to explain the rationale behind the
requirement

0.2 2013-01-28 • Explain, in chapter 2 the general approach to data – single
installation but different views for different users

• Add note that explains customization is the driving force
behind a multi-user system to chapter 1

• Added a note about premium cars not requiring the key to
be kept in the ignition, so using keys in proximity for
authentication, in the new Authentication section

• Fixed definition of Last User Mode in section 2.2 and
applied the consequent changes in the interpretation to
section Error: Reference source not found

• Remove consideration about needing to re-pair BT
devices when switching users from section 3.2, as that
should already just work

• Add note about premium cars potentially having more
hardware resources, which might allow two sessions in

parallel, in section 3.1, also mention this possibility as a
way to help achieve the 5 seconds target for user
switching, in section 3.6; this also has implications for the
solutions discussed in section 3.5

• Make the nature of the document explicit in the
introduction

• New chapter, talking about systemd as the session
manager

• New chapter, 4, to discuss customizability trade-offs
• New chapter, describes Android's multi-user approach

0.1.1 2012-07-14 • Addressed comments by Martin Barrett and Travis Reitter
• Added section about user authentication and

management

0.1.0 2012-07-11 • Initial version, based on content generated by Tomeu

Table of Contents
 Document Change Log..2
1 Introduction...6

1.1 Terminology..6
2 Requirements..7

2.1 Assumptions...7
2.1.1 Out of scope for this document...8

2.2 Use-case scenarios...8
2.2.1 Passenger acts on behalf of driver; access to driver's private data........8
2.2.2 Switching for a transaction: access to non-driver's private data.............9
2.2.3 Cancelling the transaction...10
2.2.4 Switching user, maintaining state – web...10
2.2.5 Switching user, maintaining state – music..11
2.2.6 Switching user, maintaining state – unknown app................................12
2.2.7 App declines to transfer state...13
2.2.8 Switching user, maintaining state – missing app..................................13

2.3 Technical considerations..14
3 Approach...16

3.1 Multiple users should be able to use the system, though not concurrently. 16
3.1.1 Potential for concurrent users as a future enhancement.......................16

3.2 Switching users should not disturb some of the core functionality, such as
music playing...17
3.3 When the user starts the system they should find the same applications
they had left open at shutdown, and in the same state.....................................17
3.4 When switching users, open applications must remain open......................17
3.5 Switching users shall be performed with a smooth transition, with no visual
flickering...19
3.6 User switching should not take more than 5 seconds..................................19
3.7 User data is private to each user...19

3.7.1 However, some data will be shared...19
3.8 Removable devices are accessible to all users and all users can
unmount/eject them...20

4 Limiting customizability as a trade-of..21

1 INTRODUCTION
This document describes one particular set of use-cases for how multiple users
are expected to use the Apertis system, using the Multiuser Design document1 as
a base. It starts by describing the use cases that are believed to be important in
the automotive context, followed by a technical analysis and recommendations.

The specific set of use cases on which this document focuses is a “transactional”
temporary switch between users, which is a relatively unusual situation in
mainstream computing, but has been identified as a situation that is more likely to
arise in an automotive environment.

In order to balance the various requirements and priorities that might be present
in OEM variants of Apertis, it is useful to consider trade-ofs such as not allowing
user switching in runtime, if implementing an ideal user experience for this
feature would be too onerous or only possible with a sub-par experience. The
amount of customization allowed would then be reduced to account for this
design restriction, as discussed in chapter 4, Limiting customizability as a trade-
of.

1.1 TERMINOLOGY

Please see the Multiuser Design document1 for the definitions used in this
document for jargon terms such as user, user ID/uid, trusted, system service, user
service, multi-seat and fast user switching.

1 See https://wiki.apertis.org/ConceptDesigns for the latest version of the Multiuser Design
document. This document is based on version 0.5.4.

https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns

2 REQUIREMENTS
See the Multiuser Design document for general requirements applicable to all
aspects of the multi-user design in Apertis. This document focuses on one set of
use cases which has been identified as requiring detailed design: a “transactional”
switch between users.

The driver is the primary user of the car, and hence the car's infotainment
interface; but because the driver must be able to focus on driving, it is desirable
that the front-seat passenger can “take over” a shared screen (for instance, in the
typical design that places a touchscreen between the driver and front passenger)
so that they can carry out a task on the driver's behalf (for instance, programming
a navigation destination or finding a required piece of information).

The Apertis user interface is anticipated to be customizable, and the passenger's
preferences do not necessarily match the driver's. As a result, it is desirable that
the passenger can temporarily switch to a set of preferences with which they are
more familiar.

Depending on the specific use-case, it might be necessary for the passenger to
access their own private data (as opposed to the driver's private data).

When switching users, it must be possible for open applications to remain open.
Some use-cases benefit from this, and some do not.

Some of the requirements from the Multiuser Design document are particularly
relevant to this design, and are re-stated here:

• Switching users shall be performed with a smooth transition, with no
visual flickering.

• User switching should not take more than 5 seconds.

2.1 ASSUMPTIONS

Some of the requirements in the Multiuser Design document are stated in terms of
a class of possible sets of requirements, among which a concrete design must
make a choice. In this document we have assumed the following requirements.

• User data is private to each user:

◦ Settings

◦ Address book

◦ Browser history

◦ Application icons

◦ Arrangement of icons in the app launcher

◦ Account data for web services

◦ Playlists

• The following will be shared, if that makes the design simpler:

◦ Applications (from the store)

◦ Media library (music, videos)

◦ Paired Bluetooth devices

• Removable devices are accessible to all users and all users can
unmount/eject them

The idea is that application binaries, libraries and other supporting data, as well
as media files, will be shared, but each user will have their own view of those.
That means for instance that when an application is installed by a user for the first
time its icon would appear only on the current user's launcher. When other users
install the application no download would be necessary – it would just be a matter
of making the icon appear on that user's launcher.

2.1.1 OUT OF SCOPE FOR THIS DOCUMENT

Some configurations are outside the scope of this particular proposal. They could
be supported by a diferent concrete design within the general framework
described by the Multiuser Design document.

• Multiple concurrent users are out-of-scope: to provide desired performance
on optimized hardware, each user's applications will not in general remain
active when another user is logged in. Instead, the previous user's
processes will be instructed to save their state and exit so that they can be
resumed later. An implementation may have both sessions run in parallel for
a short time if necessary, in order to facilitate a smooth transfer, but this is
intended to be merely a transitional state.

• Multi-seat (as defined by the Multiuser document) is out-of-scope: for the
same reasons, if there are multiple screens, they will all be associated with
the same user. In this document we do not aim to support separate
concurrent logins on diferent screens (e.g. separate sessions for rear-seat
passengers).

2.2 USE-CASE SCENARIOS

This design includes all of the use-cases described in the Multiuser Design
document, including those that require user switching and optional privacy
between users.

When we approach the implementation stage for this design, it would benefit from
input from a UX designer, with two main aims: first, confirm that the use cases
and their suggested workflows make sense; and second, for use cases that benefit
from “hinting” the user towards particular actions, recommend ways in which this
can be done.

2.2.1 PASSENGER ACTS ON BEHALF OF DRIVER; ACCESS TO DRIVER'S
PRIVATE DATA

Driver Diana and passenger Peter are on the way to visit Peter's friend Fred. Diana

asks Peter to check Fred's exact address. Fred has shared the address on
Facebook, in a post that is visible to Diana but not to Peter, or to both Diana and
Peter.

a. Trivial case: assuming that the driver's display is situated between the driver
and the front passenger as is conventional, Peter can use the shared display that
is currently “logged in” as Diana. The system has no way to distinguish between
input from Peter and input from Diana.

Comments: This use case is trivial to implement – indeed, it would be difficult to
avoid implementing it – and it is equivalent to the behaviour of a single-user
system. It is only mentioned here for comparison with the more complex use-
cases below, where the system needs to be aware that the person using it has
changed.

2.2.2 SWITCHING FOR A TRANSACTION: ACCESS TO NON-DRIVER'S
PRIVATE DATA

Driver Diana and passenger Peter are on the way to visit Peter's friend Fred. Diana
asks Peter to check Fred's exact address. Fred has shared the address on
Facebook, in a post that is visible to Peter but not to Diana.

Diana is the current user of the Apertis system. However, accessing this
information requires Peter's private data (in this case, Facebook credentials).

a. Switching for a transaction: Peter selects a menu option labelled “Switch
user...” or similar, chooses his own name from a list of users, and authenticates in
some way if required. This switches the current user of the Apertis system from
Diana to Peter, so that he can view his Facebook page and find Fred's address. For
the purposes of this particular use case, the initial state of Peter's session is not
significant (but see subsequent scenarios for situations where it does matter).

b. Transferring selected data: Peter should be able to select Fred's address
and set it as the satnav destination, without leaving Diana able to access his
Facebook account in future.

c. Obviousness of current user context: if Diana and Peter have selected
diferent user interface themes, it should be obvious on whose behalf the Apertis
system is acting: it should use Peter's theme if and only if it is working with Peter's
data.

d. Core functionality not interrupted: certain core functions in the
infotainment domain should not be interrupted by the user switch. For instance, if
Diana was listening to locally stored media or to the radio, or using satnav to
navigate to the city where Fred lives, this should not be interrupted. In particular,
it must be possible for a navigation-related notification (such as an imminent
turning or a speed limit change) to appear during the animated transition from
Diana to Peter.

e. Driver's settings retained for core functionality: it is important that the
driver is not distracted. While Peter is using the Apertis system, certain core
functions should remain linked to the driver's user preferences, and should take
precedence over what Peter is doing. For instance, if navigation is in the

infotainment domain, it should continue to use Diana's preferences to determine
how far in advance to warn Diana about a turning.

f. Alternative model, not recommended: An alternative model that could be used
for this transactional switching would be to use Peter's user interface preferences
(theme, etc.), but with all applications still running as Diana, so that they have
access to Diana's private data but not to Peter's. However, this model would not
satisfy point a of this particular use case, because Diana's browser is either not
logged in to Facebook, or logged in as Diana; and it is undesirable to require Peter
to enter his Facebook password into Diana's browser. It also does not satisfy point
c: we feel that using Peter's UI theme for Diana's browser would mislead Peter into
believing that this browser is running on his behalf, not Diana's.

2.2.3 CANCELLING THE TRANSACTION

Assume that the preconditions and events of use case 2.2.2 have occurred. While
trying to find Fred's address, Peter is distracted (perhaps by a call on a phone not
connected with the car) and does not continue to interact with the HMI.

a. Driver regains control of Apertis system: because some functions of the
Apertis system are driver-focused, it must be easy for Diana to revert to her
preferred configuration. If Peter's use of the situation is viewed as a “transaction”,
then Diana reclaiming the system can be viewed as “aborting” or “rolling back”
the transaction.

This could occur either via a timer (when Peter stops interacting with the HMI for
some arbitrary length of time, control returns to Diana) or via explicit action from
either Peter or Diana (a menu option or touchscreen gesture).

b. Diana's “last-used” state is restored: the foreground application, the set of
background applications, and all of their states should be identical to how they
were at the beginning of use case 2.2.2. It is as if the “transaction” had never
happened.

Comments: Returning to the last-used state is important for a variant of this use-
case: if Diana accidentally initiates user-switching, then cancels the action, this
should not result in state being lost.

Automatically switching via a timer could lead to undesired results, and should be
deployed with care: for instance, if Peter has left a photo of Fred's house displayed
on the screen to help Diana to identify where to park, but has not explicitly used
some “send to user...” action to “complete the transaction” by explicitly sending
that content back to Diana, then it is undesirable for the system to switch back to
Diana's context if that would mean not displaying that photo.

As a result, we recommend that user-switching should be via an explicit action,
not via a timer. One possible compromise would be for a timer to trigger a
notification that efectively asks “are you still there?”, ofering actions “switch
back to Diana” and “stay as Peter”.

2.2.4 SWITCHING USER, MAINTAINING STATE – WEB

Driver Diana starts to look for information on a web page, then asks the

passenger Peter to take over so that she can concentrate on driving. Peter wishes
to authenticate as himself (as in scenario 2.2.2) so that he can use his own
display preferences, bookmarks, etc.

a. State transfer: Peter selects a menu option in Diana's web browser labelled
“Send to...” or similar, or uses a touchscreen gesture with the same efect. He
chooses his own name from a list of users, and authenticates as himself. After
Peter authenticates, the browser remains open in Peter's session, and it displays
the same web page that Diana was looking at.

Comments: The user interface design for this requires some care to set up the
appropriate privacy expectations: if the action was phrased more like “switch
user” rather than “send to”, this would risk users unintentionally sharing private
state, leading to a loss of confidence in the system.

b. Transfer back: Peter finds the desired information and selects the “Send to...”
option again. The browser remains visible in Diana's session, displaying the same
web page that Peter was looking at.

Comments: This use-case has privacy concerns due to the unclear security model
that has evolved over time for the Web, and must be handled carefully. To fulfill
the use case, the state that is transferred must include the web page's URL and/or
its content. In either case this can lead to a poor UX or a security vulnerability if
mishandled, even taking into account that Peter can already see the contents of
Diana's screen:

• If the state transfer is done by URL, suppose Diana is currently looking at a
page for which Peter does not have the necessary credentials, for instance a
private Google+ post from someone who is not Peter's friend. In this case,
the first thing Peter will see is a “permission denied” message, which is not
a friendly user experience.

• If the state transfer is done by URL, suppose Diana is currently looking at a
page whose URL is itself sensitive, for instance a Google Docs “shareable
URL” that contains its own authentication token. In this case, by retrieving
the URL from browser history, Peter now has perpetual access to edit that
document, which was not intended by Diana and could be characterized as
a security flaw. This could be mitigated by careful user interface design, for
instance choosing a verb with implications of “send” or “share”.

• If the state transfer is done by content, suppose Diana is currently looking
at a page whose hidden content is sensitive, for instance one that contains
an authentication token to act on Diana's behalf in an embedded form. In
this case, by retrieving the content from browser cache, Peter now has
access to that authentication token, which once again was not intended by
Diana. Again, this could be mitigated by careful UI design.

• If the state is transferred back to Diana (point b), there is an equivalent of
each of those issues, with the roles reversed.

As a result of the issues described, Collabora recommends being careful to set
privacy expectations via UI design.

c. Alternative model: The alternative model described in 2.2.2f would avoid any
privacy concerns, but does inherit the same issues as in 2.2.2f and is not
recommended.

2.2.5 SWITCHING USER, MAINTAINING STATE – MUSIC

In a situation similar to the scenarios above, driver Diana starts to look for a
particular song in the media library, then asks passenger Peter to take over so
that she can concentrate on driving. Assume that Peter knows the desired song is
in one of his playlists.

a. Peter's playlists are available: Peter should be able to use his own playlists
to find the song. There are two ways this could work, depending whether playlists
are considered to be private or merely user-specific (see the Requirements section
of the Multiuser Design document).

If playlists are considered to be private, Peter must authenticate and switch to his
own user context, as in scenarios 2.2.2 and 2.2.4, to locate his own playlist.

If playlists are not considered to be private, Peter may either switch to his own
user context, or locate the playlist while remaining in Diana's configuration as in
scenario 2.2.1 (for instance, the music player could show an unobtrusive “Peter's
playlists” folder alongside Diana's own playlists).

b. Peter's HMI configuration is available: To minimize frustration, Peter
should be able to use his own configuration/”look & feel” for the media player to
find that song, not Diana's unfamiliar configuration.

In practice, whether Peter will actually switch users in order to do this seems likely
to depend on which he finds more irritating – using an unfamiliar user interface, or
authenticating to switch user? – and on whether he intends to do other things “as
himself” after finding the song. Remaining in Diana's configuration is covered by
scenario 2.2.1, so we assume here that he does switch.

c. Active app remains active: The media player should still be the active app
after Peter has switched to his own user context. The other apps that were
running last time Peter used the car are not started.

d. Non-private state is transferred: If Peter does switch to his own user
context, the state in which Diana was viewing the media library browser (e.g.
currently viewed album) is preserved.

e. Non-private state can be transferred back to Diana: Peter finds the
appropriate playlist, queues the song for playing and stops using the Apertis
system. If he opts to use a similar “send...” option to return control of the Apertis
system (as in scenario 2.2.4b), the state in which Peter was viewing the media
library browser is preserved, i.e. the playlist remains displayed. If he merely
switches back (“cancelling” the transaction as in scenario 2.2.3), the media player
returns to the state that was saved as part of Diana's session during point a.

f. Alternative model: The alternative model described in 2.2.2f would naturally
satisfy points b, c, d and e, but would not satisfy point a unless playlists are not
considered to be private.

2.2.6 SWITCHING USER, MAINTAINING STATE – UNKNOWN APP

In a situation similar to scenario 2.2.2, driver Diana starts to look for a particular
item in an arbitrary third-party app not specifically known to the system (e.g. a
restaurant guide), then asks passenger Peter to take over.

a. Switching user: Suppose Peter knows that the desired restaurant is saved in
his favourites, or believes that it would be easier to find in his user interface
configuration. He should be able to authenticate and use his own configuration to
find it.

b. Active app remains active: The restaurant guide should still be the active
app after Peter has switched to his own user context. Like scenario 2.2.5, but
unlike the “user switching” scenario described in the Multiuser Design document,
the other apps that were running last time Peter used the car are not started.

c. Non-private and transient state is transferred: Suppose Diana has got
part way through finding the desired restaurant, and has narrowed down search
results to the correct city. Peter should not be required to to repeat that process:
the first thing he sees after login should be the same search results. If the user
interface is designed to set the expectation that state will be transferred, using
words such as “send” or “share”, then the amount of state that can be transferred
without violating that expectation is greater.

d. Private state is not transferred: Because third-party apps could do
anything, and the level of privacy of the data they deal with will vary greatly, it
should also be possible for the app developer to avoid transferring all of its state
between users. For instance, if Diana is logged-in to the restaurant guide app so
that she can submit reviews, her login credentials must not be transferred to
Peter.

e. Explicitly returning state transfers it back: if Peter “sends back” the state
in which he was viewing the restaurant guide, similar to scenario 2.2.4b, then that
state is seen in Diana's instance of the app.

f. Cancelling the transaction restores previous state: if Peter merely cancels
the transaction and lets the system return to Diana, similar to scenario 2.2.3, then
the state in which the app was saved before point a is restored.

g. Alternative model: The alternative model described in 2.2.2f would naturally
satisfy points b, c, d and e, but would not satisfy the first half of point a unless
favourite restaurants are not considered to be private.

2.2.7 APP DECLINES TO TRANSFER STATE

Suppose a current user Alice (who could either be the driver or passenger, there is
no distinction in this use case) is using the Apertis system under her own user
context. She is using a third-party app whose designer does not consider it to be
appropriate to transfer any state to another user under any circumstances, for
example a saved-password manager or an online banking app.

Suppose Alice attempts to transfer state to another user Bob, as in scenario 2.2.2,
2.2.4 etc.

a. State transfer does not occur: In this particular app, there is no state that
would be appropriate to transfer to Bob. The user switch should not occur: for
example, this could be implemented by displaying a notification instead of
starting the switching process, or by putting an explanatory message where the
list of possible users would normally appear. If the UX design is such that apps
normally have a “send to...” menu option or button, it could appear disabled, or
not be present at all.

However, if sending to another user is done via a touch gesture, there is no direct
equivalent of a disabled option. In particular, touch gestures should always have
visual feedback, whether successful or not (similar to the way scrolling is often
made to “bounce” at the end of the scrollable range). This is so that the user can
distinguish between an unrecognized gesture, and a recognized gesture that did
not result in an action in this specific case.

Comment: this does not arise when cancelling a transaction as in scenario 2.2.3,
because that action does not transfer state in any case.

2.2.8 SWITCHING USER, MAINTAINING STATE – MISSING APP

Similar to 2.2.6, driver Diana starts a restaurant guide app, then asks Peter to
take over. This time, suppose that Peter has not installed the restaurant guide, so
the system will not be able to reproduce the current state for Peter.

a. Impossible state transfer is not offered: Similar to the previous scenario,
the system should not ofer the ability to send state to Peter.

One possible implementation would be to avoid displaying a “send to user...”
control in applications that are not installed for any other users, and to avoid
listing Peter in the menu of possible users if he does not have the application. This
has the disadvantage that in a system with three or more users, it could become
non-obvious why some applications display that control and some do not, and why
some users do not always appear in the menus.

b. Alternative design: another design that was considered is to run the app
anyway, on the basis that it is in fact already installed on the system. However,
this undermines the abstraction that each user has their own collection of apps. It
also does not address the issue that the app might require accepting a EULA,
approving a request for special OS permissions (access to GPS, etc.) or similar
actions, which Peter has not done.

c. Alternative design: a third design that was considered is to present a choice
between “just switch user to Peter” (which would restore his last-used state) and
“don't switch”. However, presenting the driver with a distracting prompt/question
is undesired.

d. Alternative design: a fourth possibility is to switch to Peter, with the initial state
in Peter's session automatically opening the app installation procedure. If Peter
chooses to install the relevant app, the state transferred from Diana should be
inserted into the “newly installed” app. If Peter does not install the relevant app
(for example because he does not agree to an EULA or OS permissions request),
the transaction should be cancelled (as in section 2.2.3).

Comments: as with the previous scenario, this scenario cannot occur when
cancelling a transaction as in scenario 2.2.3, because that action does not transfer
state in any case.

2.3 TECHNICAL CONSIDERATIONS

The use case scenarios described above impact on several design decisions which
may lead to technical challenges.

The most important of all is the implication that most of the state, including
applications, remains the same after a user switch.

One possible approach is that the application remains running through a user
switch and simply loads the private data of the new user.

As noted in the more general Multiuser design document, implementing such a
feature would require doing away with the separation of privileges provided by
using one UNIX uid (user account ID) and one X or Wayland session per user,
pushing all of the burden of authorization and tracking states for each user onto
the applications. The complexity for application authors could be alleviated by
providing some common high level APIs, but even in that case it would all be new,
untested code. It would also put too much trust on the applications themselves,
which would each be treated as a security boundary in this model; it is highly
likely that some applications would mishandle user checks, allowing data to leak
from one user session to the other.

For these reasons, Collabora does not recommend this approach; instead, as in
the more general Multiuser design document, we recommend that each user is
represented by a separate UNIX uid, with all state transfer between users
mediated by system services.

Furthermore, we believe it is important to consider a number of trade-ofs
regarding the desired functionality and the technical viability of the solution. The
recommendations below try to strike a balance between ease of use, complexity
for the application developer, stability and security.

3 APPROACH
This chapter goes over each of the requirements presenting the trade-ofs
Collabora feels are necessary and proposing technical solutions to approximate as
much as possible the desired user experience.

3.1 MULTIPLE USERS SHOULD BE ABLE TO USE THE SYSTEM,
THOUGH NOT CONCURRENTLY

The general approach Collabora recommends is adopting the usual approach with
one UNIX uid per user, similar to the approach used for desktop and laptop
systems.

In most GNU/Linux distributions a user switch is performed by running a second
instance of the X server and starting a second session with the appropriate uid,
after which subsequent switching between the same users is simply a switch
between those two X servers (the so-called “fast user switching” model, described
in more detail in the Multiuser design document).

A similar approach could be adopted for Apertis, but it would most certainly lead
to memory pressure very quickly. For this reason Collabora believes the best way
to implement user switching is by closing down the whole session of the current
user, saving applications' states while doing so, and only then starting the session
for the other user. This is equivalent to the procedure used in most GNU/Linux
distributions for a “log out” operation followed by a new login, but with the
addition of a “save state” step before closing each application; it is also very
similar to switching between user accounts on Android devices.

3.1.1 POTENTIAL FOR CONCURRENT USERS AS A FUTURE ENHANCEMENT

One option that can be considered is to provide additional hardware resources in
systems shipping for premium segment cars, such as doubling the available RAM,
for instance. This would help with memory pressure and make the approach
involving two X servers an achievable goal, with the caveats discussed below.

CPU usage, for instance, could become a problem and degrade the performance
experienced by the second user if the programs running on the first user's session
are kept running. One possible solution for this is a freeze/thaw approach in which
the first user's applications remain present in memory, but their execution is
paused until the first user's session is resumed.

If the first user's session is not frozen completely, then services running outside
the user sessions, such as the media player (see section 3.2 below), would need
to deal with the fact that there are now potentially two controlling user interfaces
and handle multiple connections gracefully.

Other system resources would also probably need to be regulated, such as muting
applications of the first user so that a game running on their session would not
interfere with a diferent game running on the second user's session. Bandwidth
regulation may become more complex, as well, to ensure no application from the
first user interferes with streaming being performed inside the second user's

session, and there are implications that need to be considered if the first user's
phone is being used for Internet connection and has a metered data plan that B
will now be using.

3.2 SWITCHING USERS SHOULD NOT DISTURB SOME OF THE
CORE FUNCTIONALITY, SUCH AS MUSIC PLAYING

This kind of cross-session functionality points to two probable design decisions.
The first is that at least some of the data used by the various users should be
shared; for example, music should probably be stored in a shared repository
rather than in a user's private storage area.

The second is that the application that performs the actual playing must persist.
There are two major options here, from which a concrete recommendation has not
yet been chosen; depending on other requirements, the various “core”
components do not necessarily all need to take the same solution.

• It could be a system service (as defined by the Multiuser Design document)
rather than a regular user-level application. That means it will be executed
outside the user session, and be controlled by the user interface via D-Bus
or a similar inter-process communication mechanism; this naturally results
in its state, such as the list of tracks currently queued, being shared
between all users. The relevant user interfaces in each user's session could
all communicate with the same system service.

• It could be a user service running on behalf of the driver, which is flagged
not to be terminated during user-switching, and communicates with the
users via notifications.

Other “core” services that need to span across multiple user sessions, such as
navigation (if present in the Apertis domain), could follow a similar design. For
example, the oFono service used for telephony is already a system service, so
taking the “system service” option for that is a natural approach.

If the system service needs to distinguish between users and act on behalf of a
specific user in response to their requests, it is important to note that this results
in it being part of the TCB (trusted computing base) responsible for enforcing
separation between users. Such services should be checked to ensure that they
do not violate the system's intended security model.

3.3 WHEN THE USER STARTS THE SYSTEM THEY SHOULD FIND
THE SAME APPLICATIONS THEY HAD LEFT OPEN AT SHUTDOWN,
AND IN THE SAME STATE

This topic is discussed in the Multiuser and Applications design documents. The
only aspect directly relevant to this particular document is that the same “save
state” step that would be done during shutdown should be performed when
switching away from a user, so that the saved state can be reloaded for use cases
such as scenario 2.2.3.

3.4 WHEN SWITCHING USERS, OPEN APPLICATIONS MUST
REMAIN OPEN

This requirement exists to enable use cases in which the driver asks a passenger
who is also a user of the system to perform some task (use cases 2.2.4, 2.2.5,
2.2.6 and 2.2.8 in this document are examples of this category). This passenger
would log in, but at least part of the state of the driver's session would remain.

We see three possible ways to satisfy these use cases:

• Transfer the state of all apps from the driver's session to the new user's
session

• Transfer the state of the single foreground app from the driver to the new
user

• Do not transfer any state

In some use cases such as 2.2.3 and 2.2.7, having the same applications open
after a switch is not a desirable user experience. It is not necessarily true that the
user would like to use, for instance, the browser if the previous user had it open.
It's also not clear that the currently open browser tabs are necessarily interesting
to the new user, particularly if they will “overwrite” the new user's saved browser
tabs from their last session.

Finally, the privacy implications of implicitly transferring state are considerable,
with significant potential for “over-sharing”; this could cause users to lose
confidence in the system and avoid using it for personal data, reducing its
usefulness.

Our recommendation is that each application should have a way to indicate to the
operating system whether it is able and willing to send (partial or full) state to
another user's instance of the same application. If it is, the HMI can display a
“send to other user” option for that application; if the application is such that
state transfer is unsafe or never useful, or if it simply does not support state
transfer, then that option would appear disabled (greyed-out) or not appear at all.

The actual state transfer would be similar to the state saving mechanism that is
already needed for save/restore functionality (as discussed in the Preferences and
Persistence design document2, and more briefly in the Multiuser and Applications3
design documents), but placing state in memory or in an OS-supplied temporary
directory instead of in the per-(user, app) data directory. We recommend that
similar data formats and API conventions should be used, so that in trivial cases
where there is no private state, the application's implementations of “save state”
and “send state” can call into the same common code. However, it should be
presented as a separate, parallel API call, to encourage application authors to
think about the amount of state transfer between users that is desired. Similarly,
the “restore state” and “receive state” operations should be distinct, but follow
similar enough conventions that they can share an implementation if that is what

2 See https://wiki.apertis.org/ConceptDesigns for the latest version of the Preferences and
Persistence design document. This document is based on version 0.2.2.

3 See https://wiki.apertis.org/ConceptDesigns for the latest version of the Applications design
document. This document is based on version 0.5.4.

https://wiki.apertis.org/ConceptDesigns
https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns

the application author wants.

Optionally transferring the state of a single foreground app, with vendors
encouraged to design their HMIs to set appropriate privacy expectations for this
action, seems a reasonable compromise between the convenience of transferring
state when it is desired, and the disruption and privacy concerns of transferring
state when it is not desired.

We do not recommend the alternative model in which the superficial appearance
of the passenger's preferences is applied to processes that continue to run with
access to the driver's personal data (as outlined in 2.2.2f), since that approach
seems likely to lead to users' privacy expectations not matching the reality. This
applies to both the driver's privacy (it is not entirely obvious that the passenger
can still access the driver's private data) and the passenger's privacy (for
instance, it is not at all obvious that the passenger should not enter passwords
into what appears to be “their” browser).

3.5 SWITCHING USERS SHALL BE PERFORMED WITH A SMOOTH
TRANSITION, WITH NO VISUAL FLICKERING

This topic is discussed in the Multiuser Design document. We recommend the
approach involving the first user's session handing of to a separate system-level
compositor, which in turn hands of to the second user's session.

3.6 USER SWITCHING SHOULD NOT TAKE MORE THAN 5 SECONDS

This requirement puts pressure into how long the user session may take for
closing down. An application that spends a lot of time writing state or doing some
other processing, like an email client synchronizing its state with a slow IMAP
server, may increase the amount of time required for completing the switch
significantly. This means care must be taken in application development to not
allow this.

Other than that, Collabora believes the system components for user switching
should be pretty fast and that the 5 seconds goal is achievable.

Note that in a premium car system, depending on the additional amount of
memory available, the applications would not necessarily really be closed down,
so this requirement could more easily be achieved by simply freezing the existing
session or not touching it at all.

3.7 USER DATA IS PRIVATE TO EACH USER

By using the traditional “one UNIX uid per user” approach, each user will have its
own home directory protected by the usual mechanisms, such as file ownership,
user and group permissions, in addition to the AppArmor restrictions described in
the Security Design document4. Note that usage of the UNIX home directory

4 See https://wiki.apertis.org/ ConceptDesigns for the latest version of the Security Design
document. This document is based on version 1.1.3.

https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns
https://wiki.apertis.org/mediawiki/index.php/ConceptDesigns

concept, in which a single directory has all of a given user's files, is not in the
plans for Apertis. Instead, each application will store its data in a directory named
after the UNIX user account, and owned by the appropriate uid, but inside the
application directory.

More information about this can be found in the Applications design.

3.7.1 HOWEVER, SOME DATA WILL BE SHARED

The requirements state that optionally some data can be shared if it makes the
problem more tractable. Collabora believe it's a good idea to make installed
applications and data such as the music library be shared. Making installed
applications per-user makes application management much more complex,
including possibly having to waste space by having two separate versions of the
same application available.

A custom view can still be provided for each user. The icons for applications may
appear only if the user explicitly installs the application, which in this case would
not cause a new download, just the addition of the icon to the user's launcher. The
same can go for other kinds of user interface aids such as playlists, providing the
user with a way of picking the songs or videos they are interested in from the
shared library.

More information about this can be found in the Applications design.

3.8 REMOVABLE DEVICES ARE ACCESSIBLE TO ALL USERS AND
ALL USERS CAN UNMOUNT/EJECT THEM

This requirement can be fully satisfied by the proposed approach. The mounting
and unmounting of devices is a privileged operation that is mediated by system
services already, so making it so that any user can mount and unmount devices
no matter who mounted them in the first place is simply a matter of setting that
up as the policy.

4 LIMITING CUSTOMIZABILITY AS A TRADE-OFF
If the Apertis ends up being designed with no user switching or even no multi-user
capabilities, then it might be desirable to consider limiting the customizability of
the system, so as to not burden drivers who seldom use the system that is
customized by the main driver.

As a general principle, the easier it is made to switch between users, the more
customizability can be ofered without it becoming a problem. One special case is
that the mechanism to switch users should remain obvious and in a consistent
location in all configurations and themes. Similarly, the user interface for driver-
focused tasks, such as the icon to open satnav functionality, should remain
consistent between configurations.

If user-switching is absent or limited, Collabora believes that any customization
that allows relocation of items and interface controls should be avoided. That
means any configuration for the positions or visibility of menu items, application
launchers, core user interface elements such as the status bar, the back button,
and so on should not be allowed.

Appearance customization, such as colour scheme, should not cause trouble for a
casual user of the system trying to find their way. The same goes for features that
allow organization of user data such as the creation of custom playlists or photo
albums. However, configuration of fonts and font sizes can cause the core UI
elements to change layout in ways that might be confusing, so allowing
configuration for those needs to be considered carefully.

Recommendations summary

As discussed in session 3.1, Collabora recommends having one UNIX user account
ID (uid) per user. The first user to be registered in a new system must be able to
perform administration tasks such as system updates, application installation,
creation of new users and setting up permissions, as discussed in the main
Multiuser Design document.

At a conceptual level, user switching should be done by closing down the user
session and starting the new user session, to avoid memory pressure. However,
implementors should consider allowing the old session to run in parallel for a short
time while applications are given a chance to save and exit. Running two user
sessions in parallel for an extended period of time, to enable “fast user
switching”, can be considered for premium cars with greater computing resources
available.

Services that need to stay running after a user switch should have their
background functionality split from their UIs, as discussed in section 3.2; they can
either run as a diferent UNIX user account ID – a “system service” – or be a
specially flagged “user service” that is not terminated with the rest of the session.

Collabora recommends against trying to have a login mode that moves the entire
session state from the current user to the user that is logging in, as described in
section 3.4. To satisfy use cases in which the current state of one user's
application is sent to another user's instance of the same application, it would be
sufficient to have that single application save and restore state, using a mode

which omits private data from the state where necessary. It is not necessarily
possible or desirable to implement this for every application, and care must be
taken to set appropriate privacy expectations.

Ways of having a smooth visual transition when switching users are discussed in
the main Multiuser Design document. Collabora recommends the use of multiple
Wayland compositors, with the first user's session compositor handing over
control of the graphics device to a system compositor to perform the switch,
which in turn hands over the graphics device to the second user's session
compositor.

Collabora recommends in section 3.7.1 that data for applications and media files
be shared among users to avoid duplication, with custom views allowing per-user
customization.

	Document Change Log
	1 Introduction
	1.1 Terminology

	2 Requirements
	2.1 Assumptions
	2.1.1 Out of scope for this document

	2.2 Use-case scenarios
	2.2.1 Passenger acts on behalf of driver; access to driver's private data
	2.2.2 Switching for a transaction: access to non-driver's private data
	2.2.3 Cancelling the transaction
	2.2.4 Switching user, maintaining state – web
	2.2.5 Switching user, maintaining state – music
	2.2.6 Switching user, maintaining state – unknown app
	2.2.7 App declines to transfer state
	2.2.8 Switching user, maintaining state – missing app

	2.3 Technical considerations

	3 Approach
	3.1 Multiple users should be able to use the system, though not concurrently
	3.1.1 Potential for concurrent users as a future enhancement

	3.2 Switching users should not disturb some of the core functionality, such as music playing
	3.3 When the user starts the system they should find the same applications they had left open at shutdown, and in the same state
	3.4 When switching users, open applications must remain open
	3.5 Switching users shall be performed with a smooth transition, with no visual flickering
	3.6 User switching should not take more than 5 seconds
	3.7 User data is private to each user
	3.7.1 However, some data will be shared

	3.8 Removable devices are accessible to all users and all users can unmount/eject them

	4 Limiting customizability as a trade-off

