
Apertis

WebKit Clutter

Design

Author: Gustavo Noronha Silva
Contributors: Tomeu Vizoso
Version: 1.1.2
Status: Final
Date: 17 November 2015
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

1.1.2 2015-11-17 • Update project name to Apertis
• Replace Secure Automotive Cloud with Apertis
• Fix links to wiki.gnome.org
• Delete obsolete document properties
• Improve language

1.1 2014-12-15 • Updated to new template

1.0 2013-05-15 • Fixed link to Collabora's WebKit Clutter site
• Fixed typo
• Made design final

0.4 2013-03-08 • Improved notes on upstreaming
• Adapted several chapters to account for the fact that

many features have already been developed
• Mention the main chapter, 5, after explaining why

investing in different cairo backends is not likely to be a
good option right now in section 5.1

• Add section on customization (4.1)
• Added section about black or white listing of applications

(8.1)
• Added chapter about audio streams management (9)
• Added chapter about rendering of non-web documents,

such as Microsoft Office documents and PDF (10)
• Added new chapter about scheduled and potential future

work (12), with sections abous Web runtime (12.1),
General performance (12.2) and JavaScript performance
(12.3)

0.3.1 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.3 2012-05-03 • Integrated Travis review
• Added information about security maintenance of a

WebKit port
• Integrated Martin Barrett's review

0.2 2012-04-30 • Section about contextual zoom

0.1 2012-04-25 • Started
• Imported WebGL chapter from Clutter/MT design

Table of Contents
Document Change Log...2
1 Introduction...4
2 Clutter port maintenance..5

2.1 Notes on upstreaming..5
2.2 Bug fixing...5
2.3 Security maintenance..5

3 Tracking Clutter improvements...7
4 Event handling overhaul...8

4.1 Customization..9
5 Tiled backing store with improved scrolling performance...................................10

5.1 Different Cairo backends..10
6 WebGL support...11

6.1 Requirements...11
6.1.1 WebGL implementation...11
6.1.2 Security...11

6.2 Approach..12
6.3 Risks...12

7 Contextual zoom...14
8 Script watchdog..15

8.1 White-listing and black-listing..15
9 Audio streams management...16
10 Rendering of non-web documents..17
11 Rendering of HTML form elements and other in-page UIs.................................18
12 Scheduled and potential future work..19

12.1 Web runtime...19
12.2 General performance...19
12.3 JavaScript performance..19

1 INTRODUCTION
The browser is an important piece of the Apertis system. The WebKit Clutter port
has been started and maintained by Collabora for the Apertis system.

2 CLUTTER PORT MAINTENANCE
As discussed earlier, the Clutter port of WebKit will require maintenance and
frequent merges from upstream to both keep the maintenance burden low and
get new features. Collabora intends to do frequent merges of upstream's trunk
followed by creating a new deb package for integration and testing.

2.1 NOTES ON UPSTREAMING

Whether to upstream and the work involved in upstreaming have been discussed
several times since the project started.

Not upstreaming causes difficulty in keeping up with upstream and impacts long-
term maintainability. However, upstreaming itself is a significant chunk of work
that will cause some friction with the WebKitGTK+ team and requires long-term
commitment by the people involved.

With a possible GTK+ and Clutter merger1 looming in the horizon, Collabora
currently believes upstreaming the Clutter port as a whole is not a worthy course
of action right now, and intends to offset the risks involved with not doing it by
tracking upstream closely by merging often.

The fact that the large majority of the changes done to create the Clutter port are
around the core components means the risk is more manageable, as well.
Collabora has been pushing any changes that make sense in core components
upstream, such as fixes to the shared WebGL code and the libsoup HTTP backend.

One additional piece that would be useful to have upstream is the Clutter-based
accelerated compositing framework. It can be used by the WebKitGTK+ port and
Collabora believes it would be very useful for the Apertis project to have it already
upstream when the Clutter/GTK+ merger comes through. At the moment,
Collabora is pushing the AC work upstream as an R&D investment.

2.2 BUG FIXING

Collabora has two main bug trackers for the WebKit Clutter port at the moment:
the Apertis project's bugzilla, and a public one hosted by Collabora2. Collabora will
work on bug fixing for WebKit Clutter features developed for the Apertis project
and for WebKit Clutter bugs in general, as feature development and other tasks
allow.

2.3 SECURITY MAINTENANCE

One important aspect of browser engines is tracking security fixes after a stable
release. The WebKit project itself does not have releases, and those are left for

1 At the moment it seems like there are two courses of action being considered in the GNOME
community: either Clutter becomes the base on which GTK+ layout and animations is built on,
or GTK+ grows the same features Clutter provides itself, it is not clear which path will be
followed, experiments to assess the pros and cons are currently under way.

2 http://webkit-clutter.collabora.co. uk /

http://webkit-clutter.collabora.co.uk/
http://webkit-clutter.collabora.co.uk/
http://webkit-clutter.collabora.co.uk/

each port to do. That means each port is also responsible for doing security
maintenance. Currently the WebKit Clutter port and its sibling WebKitGTK+ lack
security support, specially long term.

Security support is a lot of work and is not currently part of the scope of this
project. The WebKitGTK+ team has been trying to improve the situation and if
they are successful the Clutter port could use their work by using the WebKitGTK+
stable branch for deriving its releases from. This conflicts with the idea of merging
often from trunk, but WebKitGTK+ releases every 6 months, so it might be
possible to track their releases while keeping fresh at the same time.

3 TRACKING CLUTTER IMPROVEMENTS
Clutter 1.10 has brought with it a large reorganization of the classes and some
additional features. As work progresses in the Apertis project and newer versions
of Clutter are integrated, those features will be usable for better supporting
accelerated compositing functionality.

An example is the number of replays an animation should have. Previously, that
had to be implemented manually in the accelerated compositing code, but this
has been since added as a feature to Clutter itself. Note that we do not benefit
from these improvements just by upgrading the version of Clutter we ship:
development work is required to adopt the new functionality.

4 EVENT HANDLING OVERHAUL
Event-handling has been an ongoing issue which Collabora has revisited
continually since the beginning of the port. This problem is complex due to the
difficulty of balancing the requirements of the Mx scrolling widgets, web content
behavior, and the Apertis system as a whole. The following elements need to be
considered:

• Main frame touch-based kinetic scrolling

• Scrolling of in-content scrollable elements such as iframes and overflown
divs

• HTML drag and drop support

• Nearest interesting target click (“lazy click”)

Collabora believes that bringing this solution into the web engine is the most-
manageable way to solve this complexity. This means all event handling
requirements, including scrolling, would be implemented inside WebCore. The
main advantage of this is allowing the component that has the most knowledge
about the details of the content make the decisions regarding events while at the
same time allowing for sharing of code with other ports.

A recent trend in the WebKit development world is recognizing that the new event
handling requirements brought by the mobile and touch screens are becoming
largely mainstream. The number of custom implementations has been going up
and their complexity as well. Desire for greater code sharing and for making those
use cases first class citizens has pushed developers to make those built-in
features of the engine. Collabora believes the work on event handling for the
Apertis project can both take advantage of that new trend and contribute to
making it happen.

The first step carried out by Collabora towards this goal was to move
responsibility for performing scrolling and panning from Mx scrolling widgets to
WebCore, reusing existing infrastructure for gesture handling, and leveraging
Clutter's gesture recognition engine. More work was done after that to add the
same configurability allowed by the Mx widgets. This work has been provided in
the (2012Q3) release, and received improvements and fixes during the
(2012Q4) development cycle.

A final important requirement that is useful to have built into WebCore is the
feature called lazy click, which does a search for interesting nodes around the
point that got touched to account for the coarser accuracy of fingers compared to
mouse pointers. This feature has been delivered in the (2012Q4) release.

4.1 CUSTOMIZATION

There has been some interest in allowing customizability of the scrolling
behaviour.

Scrolling of the main page content may be forced (as opposed to scrolling in-page
scrollable content) by using two fingers to scroll, while single-finger dragging

would use the current context-aware behaviour; other OEMs may want the
opposite, or just the context-aware behaviour.

Another potential OEM customization would be to customize the bouncing
animation – it's bounce time, or other behaviours.

Collabora believes providing customization to this extent would make the code
significantly more complex and hard to maintain. It would also probably deviate
more from upstream and make the frequent merges harder to do. In addition, it is
worth considering the impact on the usability of the system by people who drive
different brands that ship Apertis, since the slightly different behaviour depending
on the OEM may be very confusing.

Nonetheless, customization of these behaviours by editing the code, although not
trivial, is not too hard to perform, so Collabora recommends this approach should
be used should any OEM want to change these behaviours.

5 TILED BACKING STORE WITH IMPROVED SCROLLING
PERFORMANCE
As part of the Accelerated Compositing work, the WebKit-Clutter widget has been
turned into a container that can have arbitrary actors added to it. This
infrastructure was used to build a backend for the tiled backing store that is much
more efficient, having the tiles be actors, which are then placed directly on the
stage.

This change has increased scrolling performance for slow scrolling (often referred
to as panning), and for faster scrolling, with improvements of up to 100% in FPS,
with up to 50% reduced CPU usage, even with the system under stress.

5.1 DIFFERENT C AIRO BACKENDS

Another way to improve painting operations' performance is by having them not
go through a Cairo image surface on its way to the Cogl texture. Intel has started
a Cogl backend that paints directly to the texture. During the work on the Clutter
port of WebKit, there was discussion with Intel about using this backend. The news
Intel brought forward was that the backend was still a work in progress and any
serious testing would not be done for a while. So, Collabora believes that at this
point in time this backend is not a viable option.

Another option would be to use a different GL or GLES based backend such as
Cairo­GL. This would be challenging because mixing GL/GLES with Cogl (and thus
Clutter) usage is not yet supported, but the work done towards making WebGL
viable could potentially also be used as a base for this.

Unfortunately, Cairo­GL is still an experimental backend and has performed poorly
on benchmarks that have been run. A benchmark ran recently by a Cairo
developer has shown the GL backend to be consistently outperformed by the
baseline image backend which renders purely using the CPU3.

The results might differ depending on the hardware – in particular, it might be that
ARM's CPU underperforms the Vivante GPU, but there is no substantive reason to
believe so at the moment. Linaro has indicated the desire of improving GLES
integration with Cairo and validating its performance4, but so far results are not
forthcoming.

At this point Collabora believes using a Cairo backend based on GL/GLES is not a
clear win, and so would advise against it unless some other party has an interest
in driving the effort, which is bound to require significant resources and effort.

Work that resulted in a very significant improvement in scrolling performance has
been done by Collabora for the (2012Q3) release. This work used Clutter actors
to serve as the tiles used by the backing store, as explained in chapter 5.

3 http://people.freedesktop.org/~ickle/snb+gl-image-1.12.png see
http://ickle.wordpress.com/2012/03/28/cairo-1-12-let-the-releases-roll/ for the whole blog post

4 https://wiki.linaro.org/WorkingGroups/Middleware/Graphics/Specs/1111/engr-components-cairo

https://wiki.linaro.org/WorkingGroups/Middleware/Graphics/Specs/1111/engr-components-cairo
http://ickle.wordpress.com/2012/03/28/cairo-1-12-let-the-releases-roll/
http://people.freedesktop.org/~ickle/snb+gl-image-1.12.png

6 WEBGL SUPPORT
WebGL5 specifies a way of using an API very similar to Open GL ES 2.0 from web
pages. This allows web developers to deploy to browsers applications that used to
be possible only on the desktop. Examples of such applications are realistic
games, complex data visualization, geographic visualization and 3D modeling6. It
also allows the GPU to be used for tasks that were already possible using the
HTML 2D Canvas API7 but were too slow in some devices or consumed too much
battery power8.

Through the specification is very new, most browsers already support it, though
often support is not complete or addresses an earlier draft. WebKit already has
fairly good support for WebGL, and it continues to be improved by Safari,
Chromium and GNOME developers.

Browsers usually just bridge JS calls to WebGL methods to their OpenGL or
OpenGL ES equivalent, but in the case of WebKit-Clutter this cannot be done as
easily because it is not currently possible to safely use raw GL calls in a Clutter
application. This design will address the changes that are needed in Cogl so that
is possible.

6.1 REQUIREMENTS

6.1.1 WEBGL IMPLEMENTATION

WebGL support in WebKit is quite complete, though not all ports have
implementations of the same quality. Collabora has implemented the WebGL
backend for the Clutter port so it is now on par with the WebKit-based browsers
that have best support for WebGL as of February 2013.

Among the code that the Clutter port reuses from within WebKit is the ANGLE
shader translator. Though the WebGL shader language specification is very closely
based on the OpenGL ES Shading Language, there are some differences due to
security considerations. The ANGLE shader translator transforms WebGL shaders
in the format that the OpenGL ES driver requires.

6.1.2 SECURITY

There is a good explanation of the security issues with WebGL implementations in
a Khronos WebGL security article9. This section explains how WebKit addresses
each of them:

• Undefined Behavior: All WebGL implementations have to implement the
behavior from the spec and the conformance test suite tests it.

• Out of Range Memory Accesses: Same as above, the WebGL spec details

5 http://www.khronos.org/webgl/
6 http://en.wikipedia.org/wiki/Google_Body
7 http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
8 http://chrome.angrybirds.com/
9 http://www.khronos.org/webgl/security/

http://www.khronos.org/webgl/security/
http://chrome.angrybirds.com/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://en.wikipedia.org/wiki/Google_Body
http://www.khronos.org/webgl/

the checks that must be done before calling the GL or GL ES
implementation and these are tested in the conformance suite.

• Access to Uninitialized Memory: Same as above.

• Shader Validation and Transformation: Even though the Apertis platform
uses GL ES 2.0 and thus its GLSL version matches that of WebGL, all
shader code is passed to the ANGLE shader compiler10 which validates it
accordingly.

• Denial of Service: If the GPU vendor implements the EXT_robustness11
extension and makes use of it when a process uses too many resources,
WebKit will gracefully reset the WebGL context avoiding a DoS situation.

• Cross-Origin Media: WebKit implements CORS12 (Cross-Origin Resource
Sharing) in all image and video elements and also to texture loading in
WebGL.

• Blacklisting graphics drivers: This is not implemented in WebKit, but is not
needed in platforms where the specific version of the GPU drivers is
known and can be tested beforehand.

Because WebGL is a thin layer on top of the GL ES 2.0 API, the provider of its
implementation has to take serious care of its security, because most security
flaws will be exposed to web pages thus being exploitable remotely.

6.2 APPROACH

The clutter backend for WebGL is based on the GTK+ one. The bridging of most
calls from JS to the underlying GL implementation is very similar, but the setup of
the GL context is very different, as it is done through Cogl.

As mentioned before, it is not safe for Clutter applications to call GL directly. This
is because Cogl makes the assumption that pipeline state is not changed by other
parties. Thus, Cogl can reduce the amount of state switching and batch geometry
calls between state changes for substantial performance gains. To support raw GL
calls, Collabora added functionality to Cogl so an additional GL context can be
created for those raw GL calls, leaving the pipeline state of the Cogl context
untouched.

Also, an indirection layer is used that covers the whole GL ES 2.0 API to make sure
WebKit uses the same GL library as Cogl.

6.3 RISKS

WebKit2 has moved to a split process model in which the UI runs in one process
and each page is web content runs in its own process. In case it's decided to port
WebKit-Clutter to WebKit2 for the Apertis project, Collabora will have to find a way
to efficiently render WebGL canvases into textures that the UI process can

10http://code.google.com/p/angleproject/
11http://www.khronos.org/registry/gles/extensions/EXT/EXT_robustness.txt
12http://www.w3.org/TR/cors/

http://www.w3.org/TR/cors/
http://www.khronos.org/registry/gles/extensions/EXT/EXT_robustness.txt
http://code.google.com/p/angleproject/

present. The two main alternatives are either rendering to a frame buffer object
(FBO) from the Web process and sharing that texture to the UI process, or
serializing the GL commands and sending them from the Web to the UI process for
execution.

7 CONTEXTUAL ZOOM
Contextual zoom is the feature found on most smartphones today that allows the
user to double tap a part of the page so that the browser closes up on that part of
the page, making sure the content you're interested in fits the whole width of the
browser viewport. This makes for better reading (especially on multi-column
websites). Some implementations, such as android's go a step ahead, and modify
the width of the content to make the content even more readable.

This has to date usually been a browser feature rather than an engine feature.
The same trend that recognizes the mobile scrolling requirements have also
reached this one, though, and including something similar to this as shared code
in WebCore makes sense.

The requirements are:

•Provide an API either inside WebKit-Clutter or as a separate library that
allows zooming to a part of the page

•The zoom needs to be animated in a way that there is no discontinuity

•The API should provide enough flexibility to allow the browser to control the
zooming animation

This feature has been implemented and delivered as part of the (2012Q4)
release.

8 SCRIPT WATCHDOG
If a single block of JavaScript runs uninterrupted for a long time, the UI can
become unresponsive and the CPU usage can starve other processes or waste
significant battery capacity. WebCore monitors how long a block of JavaScript has
been running and gives the chance to the browser to terminate it13.

Collabora added API to webkit-clutter for the browser to decide what to do in that
circumstance, as part of the (2012Q3) release. For example, it could ask the user
whether the execution of the block should be stopped, or could stop it right away
to conserve resources.

Note, however, that testing this feature has proven to be a challenging endeavour.
This indicates that there are some cases which are not caught by the watchdog.
Depending on how this feature turns out on some real-world testing, it may make
sense to invest in researching and improving the inner workings of the watchdog.

8.1 WHITE-LISTING AND BLACK-LISTING

There has been interest in maintaining a black-list of web applications (or pages)
that misbehaved. That would be for the case in which the browser gets killed
because it stopped responding and the scripts watchdog was not able to restore it
to working, so that those web apps or pages are not loaded automatically upon
startup causing the browser to go unresponsive again.

Web14 (codename Epiphany15), the GNOME web browser maintains a session file
that stores information about all loaded pages, such as title, URL, and whether
they are currently loading or not. If Web is quit unexpectedly, it will refuse to load
any pages that were marked as still loading automatically. This same approach
could be used by the Apertis web browser to not load those pages automatically
or to create a blacklist database.

The problem with creating a blacklist from this is that it is quite likely it will hit
false positives: if multiple tabs are loading, but only one causes the crash, the
browser does not have enough information to detect which page caused the
problem. In the future, if the browser is moved to WebKit2, using a web process
per tab/app, this behaviour could be improved.

The white-list, on the other hand, would be used to enable applications to use lots
of resources for a long time without getting killed by this infrastructure in what
could be considered a false positive. A white-list can easily be implemented,
keeping a list of applications that are allowed to go over the limits should be
enough.

13http://trac.webkit.org/browser/trunk/Source/WebKit/gtk/WebCoreSupport/ChromeClientGtk.cpp#
L365

14https://wiki.gnome.org/Design/Web
15https://wiki.gnome.org/Epiphany

https://live.gnome.org/Epiphany
https://live.gnome.org/Design/Web
http://trac.webkit.org/browser/trunk/Source/WebKit/gtk/WebCoreSupport/ChromeClientGtk.cpp#L365
http://trac.webkit.org/browser/trunk/Source/WebKit/gtk/WebCoreSupport/ChromeClientGtk.cpp#L365

9 AUDIO STREAMS MANAGEMENT
Ensuring an audio stream that is currently playing is stopped when another,
higher priority, stream is started is one of the requirements for the web browser.
In discsussions over email, Collabora has described how this functionality works
when using PulseAudio in an email exchange back in May 201216. Collabora
believes this should be considered as a system-wide functionality and applied to
all media applications, including the browser.

Support for pausing and unpausing streams when PulseAudio corks or uncorks a
stream is being added to the upstream WebKit GStreamer backend for HTML5
media by Igalia17, which means Apertis will be able to take advantage of it when it
is ready and merged. The work-in-progress patch sets the role of the stream so
PulseAudio can know if that stream is for a video or for audio-only, and a policy
plugin can then apply whatever rules are required.

16See email with subject Re: Queries regarding webkit, sent in the morning of May 30, 2012; see
also
http://freedesktop.org/software/pulseaudio/doxygen/stream_8h.html#a14e698233ac2d2466466
51955ab0ec7b

17https://bugs.webkit.org/show_bug.cgi?id=91611

https://bugs.webkit.org/show_bug.cgi?id=91611
http://freedesktop.org/software/pulseaudio/doxygen/stream_8h.html#a14e698233ac2d246646651955ab0ec7b
http://freedesktop.org/software/pulseaudio/doxygen/stream_8h.html#a14e698233ac2d246646651955ab0ec7b

10 RENDERING OF NON-WEB DOCUMENTS
Several kinds of documents that are not strictly web documents are available on
web sites for viewing and download. Some of these types of documents, such as
PDFs, have become so common that some browsers embed a viewer.

WebKit itself does not have support for rendering those documents and the
WebView actor provided by WebKit Clutter actor does not support any kind of
custom rendering. However, embedding a separate actor that uses a PDF
rendering library to be shown may be considered instead of the WebView actor for
PDF documents. The same goes for word processing documents, such as Microsoft
Office files, for instance.

Mozilla has started an experimental JavaScript library called PDF.js18 which is able
to render PDF files in a web page without the need for any kind of plugin.
Collabora has not experimented with the library, but it is worth investigating its
viability, particularly in terms of performance. If it turns out to meet performance
requirements, it will likely be easier to integrate than platform PDF rendering
libraries, unless there is already a working solution.

18https://github.com/mozilla/pdf.js/wiki

https://github.com/mozilla/pdf.js/wiki

11 RENDERING OF HTML FORM ELEMENTS AND OTHER IN-PAGE
UIS
WebKit has support for custom drawing of form elements and other in-page UIs,
such as media controls. Collabora has made most of the rendering available to be
implemented in the toolkit library layer, and recently added some of the newer
ones. Customized rendering of media controls is also one of the support/feature
request topics. Collabora can help with advice, support or with the development of
custom rendering or pumbling.

12 SCHEDULED AND POTENTIAL FUTURE WORK

12.1 WEB RUNTIME

There is interest in providing developers with a way to write applications using
web technologies for Apertis. While this is out of the scope of this design, a small
description of existing technologies and how they can be applied follows.
Collabora can help in the future with a more detailed analysis of what works needs
doing, specification and development of a solution.

WebKit Clutter supports roughly the same set of technologies as those supported
by WebKitGTK+. That means Application Cache, Local Storage, IndexedDB (which
replaced the now deprecated Web Database) are all supported, in addition to
HTML5 canvas, media elements, WebGL, and so on.

A runner for web applications would ideally create a process for each separate
application that will be executed, and use application-specific locations for storing
data such as caches and the databases for the features described above –
meaning it would not require any kind of special privilege, it would be a regular
application. This also means permissions and resource limits can be set
individually also for web applications.

The fact that more than one process would be executed does not mean a lot of
memory overhead, since shared libraries are only loaded in memory once for all
processes that use them. This would also have several advantages such as
making managing applications permissions easier, and avoiding one application
interfering with others.

The Apertis platform already ships one of the main components that would be
required for integrating with platform APIs: the seed library. There has already
been some experimentation with it, and Collabora has helped fix a few issues that
came up. Collabora will continue to provide support through support requests, and
is available should a more detailed consultancy be required to further detail and
implement this.

12.2 GENERAL PERFORMANCE

Performance of the web engine in general will be looked at during the (2013Q2)
release cycle, focused on load time and memory consumption, essentially.
Graphics performance, including performance for HTML5 elements such as the 2D
canvas will have to be postponed, since the lower level components that need to
be released by FreeScale and Vivante are not working properly at the moment and
working on improvements done to these areas for the intel reference hardware
will not necessarily be portable.

12.3 JAVASCRIPT PERFORMANCE

In terms of JavaScript performance, WebKit Clutter is state of the art, since it
employs the same JS engine used by Apple's Mobile Safari on the iPhone and iPad.

The engine has all of the features, including the “SquirrelFish Extreme” Just In
Time (JIT) compiler19 - marketed by Apple as Nitro, the LLInt interpreter20 for code
for which the JIT would only add overhead, and DFG21. Any work here would
require high expertise in compiler, JIT and interpreter technologies, as there are
no low-hanging fruits for quite a while.

19https://www.webkit.org/blog/214/introducing-squirrelfish-extreme/
20http://appleinsider.com/articles/12/03/01/new_low_level_javascript_interpreter_to_boost_webkit_

performance_more_than_200
21http://2012.jsconf.eu/speaker/2012/08/29/javascripcore-s-dfg-jit.html

http://2012.jsconf.eu/speaker/2012/08/29/javascripcore-s-dfg-jit.html
http://appleinsider.com/articles/12/03/01/new_low_level_javascript_interpreter_to_boost_webkit_performance_more_than_200
http://appleinsider.com/articles/12/03/01/new_low_level_javascript_interpreter_to_boost_webkit_performance_more_than_200
https://www.webkit.org/blog/214/introducing-squirrelfish-extreme/

	Document Change Log
	1 Introduction
	2 Clutter port maintenance
	2.1 Notes on upstreaming
	2.2 Bug fixing
	2.3 Security maintenance

	3 Tracking Clutter improvements
	4 Event handling overhaul
	4.1 Customization

	5 Tiled backing store with improved scrolling performance
	5.1 Different Cairo backends

	6 WebGL support
	6.1 Requirements
	6.1.1 WebGL implementation
	6.1.2 Security

	6.2 Approach
	6.3 Risks

	7 Contextual zoom
	8 Script watchdog
	8.1 White-listing and black-listing

	9 Audio streams management
	10 Rendering of non-web documents
	11 Rendering of HTML form elements and other in-page UIs
	12 Scheduled and potential future work
	12.1 Web runtime
	12.2 General performance
	12.3 JavaScript performance

