
Apertis

Robustness

Design

Author: Tomeu Vizoso
Contributors: Nirbheek Chauhan
Version: v0.2.4
Status: Final
Date: 16 November 2015
Last Reviewer: Luis Araujo

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.2.4 2015-11-16 • Updated to new name Apertis
• Removed file custom properties (metadata)

0.2.3 2014-12-15 • Updated to new template

0.2.2 2014-03-12 • Fix typos
• Mention GKeyFile instead of GFile
• Update description of systemd user sessions
• Comment on POSIX atomic overwrite-by-rename
• Update Btrfs mount-time options
• Notes about partitions alignment on flash storage
• Comment about cgroups and systemd options

CPUSchedulingPriority and IOSchedulingPriority
• Update note on future investigations
• Add a link to the btrfs wiki

0.2.1 2013-08-09 • Re-introduce ext4 text
• Describe filesystem options for each partition used in the

System Updates and Rollback Design.
• Replace references to “btrfs technical document” with a

chapter on applicable BTRFS features.

0.2.0 2013-03-19 • Make explicit that GLib is already a dependency
• Remove mentions to Ext4
• Mention eMMC and the trade-off between the amount of

in-flight data and performance
• Explain how the system can reclaim space from

applications through the manifest
• Explain how the amount of space that applications can

consume can be limited
• Make explicit that temporary files on persistent file

systems are deleted on reboot
• Added information on how cgroup controllers report

statistics on resource usage
• Update to reflect that the JavaScript watchdog API has

been already added to WebKit-Clutter
• Add a note on how the GL virtualization layer could reset

contexts and even terminate processes that disrupt the
system because of excessive GPU utilization.

• Add a note about reconnecting USB devices at voltage
drops

0.1.5 2013-01-16 •

0.1.4 2012-06-08 • Refer to the security design about D-Bus security
• Add section about mitigating the effects of lack of disk

space
• Add suggestion for releasing caches in primary memory

when there's memory pressure
• Explain how fs options can improve robustness
• Mention in-place editing as the main use case of

overwrite-by-rename
• Explain how to choose between WAL and the rollback

journal
• Explain which fs options can be useful in the different

partitions that will be in the system
• Explain the cost of fs checksumming and when it makes

sense
• Propose trying only to flush the caches on the device at

power loss
• Mention which directories in / can be expected to be

written to during normal operation
• Propose a system service that will coordinate the writing

to removable devices
• Added note about design for the system chrome and

applications also playing an important role in user
experience and robustness

0.1.2 2012-05-09 • Add information about QA
• Mention that the system will be notified of power loss

100ms before

0.1.1 2012-05-07 • Grammar fixes

0.1.0 2012-05-03 • Initial revision

Table of Contents
Document Change Log...2
1 Introduction...5
2 Requirements..6
3 Approach...7

3.1 Application data...7
3.1.1 General guidelines...7
3.1.2 SQLite..7
3.1.3 Tracker...8
3.1.4 User settings...8
3.1.5 Media...8
3.1.6 Caches...8
3.1.7 Filesystems..9

3.1.7.1 Filesystem options..9
3.1.7.2 Checksumming...11
3.1.7.3 Alignment...11
3.1.7.4 Testing..12

3.1.8 Root filesystem..12
3.1.9 Other filesystems..12
3.1.10 Main storage..13
3.1.11 Removable devices..13

3.2 Mitigating the effects of lack of disk space..14
3.3 Resource management..14

3.3.1 CPU..15
3.3.2 I/O..16
3.3.3 Memory...16
3.3.4 Network queue..17
3.3.5 GPU..17
3.3.6 Accounting...18

4 USB undervoltage...19
5 Risks...20
6 Design notes...21
7 BTRFS Overview..22

7.1 BTRFS robustness supporting features...22
7.1.1 Cheap, fast, and atomic snapshots and rollback...................................22
7.1.2 Repair and recovery..22
7.1.3 Checksumming..23

1 INTRODUCTION
This design identifies circumstances that, though undesired because of the risk of
loss of functionality, cannot be completely avoided and provides suggestions for
dealing with them in such a way that as little functionality as possible is lost.

Note that improving D-Bus' robustness is a topic that will be covered in a later
stage in its own design document. About securing D-Bus services, please see the
security design.

2 REQUIREMENTS
Minimize loss of data and loss of functionality due to data corruption in these
abnormal circumstances:

• Unexpected power loss

• Unexpected removal of storage devices

• Unexpected lack of disk space

• Physical damage to the media and other hardware errors

Minimize loss of functionality due to processes hogging these shared resources:

• CPU

• GPU

• I/O

• memory

• network queue

• D-Bus daemon

3 APPROACH
This section explains how to address the requirements in several specific cases,
taking into account different data sets and circumstances.

3.1 APPLICATION DATA

This section contains recommendations about how to robustly deal with data
generated by applications.

3.1.1 GENERAL GUIDELINES

No software should assume that opening files will always succeed. Failure
conditions should be dealt with and the process will either continue running with
as little loss of functionality as possible, or will log a message and exit. Programs
should do the same when writing data (the filesystem may be full, or any other
mode of error might occur).

For example, if the browser application finds out at start up that the cookies file is
corrupted, it should move the old file away (or just delete it) and run as usual
other than past persistent cookies will have been lost. Or if there was an error
when writing a new persistent cookie to disk, the browser would keep running
with that cookie being transient (in memory only).

In order to reduce the effects of data corruption, regardless of the causes, it would
make sense to store different data sets in separate files. So that if corruption
happens in, for example, the browser cookie store, it would not affect unrelated
functionality such as playlists.

For big data sets, Collabora recommends SQLite with either Write-Ahead Logging
(WAL)1 or roll-back journal2. For smaller data sets, a robust method is to write to a
temporary file and rename it on top of the old one once finished. This method is
called “atomic overwrite-by-rename” and is mostly used when editing a file in-
place.

POSIX requires the atomicity of overwrite-by-rename3. Btrfs, Ext3 and Ext4 give
atomic overwrite-by-rename guarantees, as well as atomic truncate guarantees.
The FAT filesystem guarantees neither.

3.1.2 SQLITE

For applications using SQLite for their storage, Collabora recommends using either
WAL or the rollback journal so that transactions are committed atomically. In
addition, filesystem-specific tuning would be done by configuring the SQLite
system library for optimal performance.

WAL will be the best option in most cases, except when transactions will be very
big (involving more than 100 MB) and when writes are very seldom, then the

1 http://www.sqlite.org/draft/wal.html
2 http://www.sqlite.org/draft/lockingv3.html#rollback
3 http://pubs.opengroup.org/onlinepubs/009695399/functions/rename.html

http://www.sqlite.org/draft/wal.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/rename.html
http://www.sqlite.org/draft/lockingv3.html#rollback

rollback journal would be preferred.

Collabora will run the TCL test harness4 for SQLite in LAVA, to detect any issues in
the specific configuration and software in the target platform. These include
robustness tests that reproduce out-of-memory errors, input/output errors and
abnormal termination (crashes or power loss).

3.1.3 TRACKER

Tracker stores data in SQLite files, so the robustness considerations that apply to
SQLite apply to Tracker as well. By default it uses WAL instead of the traditional
rollback journal, which gives better performance for Tracker's workload with the
same robustness guarantees.

3.1.4 USER SETTINGS

For configuration settings in general, Collabora recommends using the GSettings
API5 from GLib with the dconf6 backend. When updating the database, dconf will
write the whole new contents to a new file, then atomically renaming it on top of
the old one.

For bigger pieces of data (individual settings whose data component exceeds 1
KB), Collabora recommends using plain files via a known-robust file-handling
library (such as GKeyFile7 from Glib, which is already a dependency) or SQLite.

3.1.5 MEDIA

For media, the meta-data is stored in Tracker, with the actual data files in the
/home filesystem and in attached removable devices.

If the Tracker database that contains the meta-data has been corrupted, it should
be moved to the side (or deleted) and recreated again by indexing all available
media files. To minimize the chances of corruption, refer to the Tracker section
above.

Software that reads the actual media files should assume media files may contain
invalid data and ignore them without further loss of functionality. Corrupted media
files should not be displayed in the UI.

3.1.6 CACHES

All software that uses a cache file should be ready to find that the cache is
unusable and cope with it without loss of functionality (temporary degradation of
performance is obviously expected in this case though the mechanism by which
the cache became corrupted will be treated by developers as a bug to fix).

For example, if during start-up the Folks caches are found to be unreadable,
libfolks would remove the corrupted cache files and recreate them, taking a

4 http://www.sqlite.org/testing.html#tcl
5 http://developer.gnome.org/gio/stable/GSettings.html
6 https://live.gnome.org/dconf
7 https://developer.gnome.org/glib/2.37/glib-Key-value-file-parser.html

https://developer.gnome.org/glib/2.37/glib-Key-value-file-parser.html
https://live.gnome.org/dconf
http://developer.gnome.org/gio/stable/GSettings.html
http://www.sqlite.org/testing.html#tcl

longer time to reply to queries. As the application using Folks would be executing
the queries asynchronously, the UI would keep being functional while the query
executes.

Examples of other components that use caches and that should cope with cache
corruption are the browser and the email client.

3.1.7 FILESYSTEMS

The reliability with which data is stored depends on both the storage medium as
well as the filesystem. In this section, we cover FAT32 and Btrfs. Ext4 is
mentioned, as it is a popular default filesystem on many Linux distributions –
however it doesn't suit the needs of the rollback system – either for system
rollbacks (See the System Update and Rollback Design) or for application rollbacks
(See the Applications Design).

The FAT32 filesystem is not robust under abnormal circumstances since it was not
made for devices which could be disconnected at any moment. In general, an
approach where writes to the device are tightly controlled and restricted to small
time-windows would help minimize the chances of corruption. See the Media and
Indexing design for a detailed explanation of the issues and suggestions.

The Ext4 filesystem is quite robust under power failure by default. It can be made
even more robust by mounting it under data=journal8 mode, but at a large cost to
performance.

Btrfs has been created on very robust principles, building upon the experience of
Ext4. Some brief technical details are provided at the end of this document in 7,
BTRFS Overview.

3.1.7.1 Filesystem options

Filesystems usually have parameters that can be tuned to suit specific workloads.
Some of them affect performance as well as robustness; either by trading off
between the two, or by taking advantage of specific hardware features available
with the storage media.

• FAT32 is a simple filesystem that does not have many filesystem options
related to performance or robustness. Since we will not be creating any
FAT32 partitions ourselves, only mount-time options are interesting for us.
The recommended options are listed below:

▪ sync, flush
These filesystem options ensure that the kernel, as well as the filesystem,
flush data to the partition as soon as possible. This greatly reduces the
chances of data loss or filesystem corruption when USB drives are
yanked out by the user.

▪ ro (read only)
It is recommended that FAT32 partitions be mounted read­only to

8 http://kernel.org/doc/Documentation/filesystems/ext4.txt

http://kernel.org/doc/Documentation/filesystems/ext4.txt

avoid filesystem corruption, and other related problems as detailed in
the “Media and Indexing Design” in the section “Indexing database
on removable device”.

• Btrfs is relatively new, and so does not have many options relevant to our
needs of enhancing reliability on eMMC storage media. The available
options are listed below.

◦ Mount­time options:

▪ commit=number (default: 30)
Set the interval of periodic commit. This option is recent (since kernel
3.12)9.

▪ ssd
This option enables SSD­specific optimizations and disables some
optimisations specifically for rotating media. This option is enabled
automatically on non­rotating storage.

▪ Recovery (default: off)
This option can be used to attempt recovery of a corrupted filesystem
(See 7.1.2, Repair and recovery).

◦ Filesystem creation options:

▪ -s sector-size
This is the size of the filesystem blocks used for allocations. Ideally, this
should be the same size as the block size for the storage medium.

▪ ­M

This sets BTRFS to use “mixed block groups” ­ a mode that stores data
and metadata chunks together on disk for more efficient space
utilization for small filesystems – but incurs a performance penalty on
large ones. This option is not mature and will be evaluated in the
future.

The System Updates and Rollback Design describes the partition layout for Apertis.
Not all the partitions have the same requirements, so both the FAT32 and BTRFS
filesystems are used. The partitions are configured as:

• Factory Recovery – This partition is never mounted read­write and must be
readable by the boot loader. Currently the boot loader for Apertis – U­boot
– does not support BTRFS. While patches exist to add that functionality, they
have not yet seen widespread testing. FAT32 will likely be the filesystem
chosen for the factory recovery image.

• Minimal Boot partitions – These partitions must also be readable by the boot
loader, and are currently FAT32. They are not normally mounted at run­time,
instead they are created, mounted, and populated by the system update
software once – and only ever accessed by the boot loader afterwards.

9 https://btrfs.wiki.kernel.org/index.php/Mount_options

https://btrfs.wiki.kernel.org/index.php/Mount_options

They will be mounted with the “sync” and “flush” flags.

• System ­ Since BTRFS provides an excellent snapshot mechanism to assist
system rollbacks (See 7.1.1, Cheap, fast, and atomic snapshots and rollback),
this partition will be populated with a BTRFS filesystem created with the
appropriate sector size for the storage device. It may be created with
mixed block groups to save storage space if that option does not lead to
instability. It will be mounted with the ssd option as well as read­only. During
a system update a single subvolume of the system subvolume will be
mounted read­write. The repair mount option will never be attempted on
the system partition, instead rollbacks or factory recovery will be used to
avoid potentially putting the system into an unknown state.

• General Storage – This partition shares similar requirements to the system
partition. It will be BTRFS, created with an appropriate sector size and
possibly mixed block groups. It will be mounted with the ssd option. This is
the only built­in non­volatile storage that will always be mounted read­write.
In the case of a damaged filesystem, repair may be attempted on this
partition.

Additionally, there are 2 partitions for raw status flag data that do not use filesystems
at all. See the System Updates and Rollback Design for more details.

3.1.7.2 Checksumming

Checksumming is used for detecting filesystem corruption due to any reason.
Different filesystems have different mechanisms for checksumming which give
us coverage for various different causes of filesystem corruption. Each
mechanism consumes I/O and CPU resources, and that must be weighed
against the advantages that it gives us.

It is important to note that checksumming does not protect us against
corruption or help us in fixing the root cause of the corruption; it only allows us
to detect filesystem corruption when it happens. Hence, it is only useful as a
warning sign and recovering from data corruption is beyond the scope of this
feature.

• FAT32 is a very old and simplistic filesystem, and it has no inbuilt
facilities for checksumming.

• Btrfs maintains a checksum tree for all the blocks that it allocates and
writes to. Hence, all file data and metadata is checksummed. This is the
default behaviour and the current checksum algorithm uses few
resources. This method of checksumming can detect all the ways in which
corruption can occur to data on the filesystem. See 7.1.3, Checksumming
for more detail.

• Ext4 maintains checksums for journal data only, no checksumming of file
data takes place.

3.1.7.3 Alignment

The first piece of tuning that a filesystem on flash storage needs, is a proper

mapping of the filesystem blocks to the page size of the erase blocks on the flash.
This consists of two parts:

1. Ensuring that the filesystem and storage erase block sizes match using
filesystem creation options.

2. Aligning the block allocations in the filesystem with the storage blocks by
using the appropriate offsets while partitioning, or while creating the
filesystem.

If either of these is not satisfied, each filesystem block write will trigger two or more
flash block writes, and reduce the performance as well as reliability of the MMC
card.

The storage erase block size can be read from /proc/mtd or from U­Boot10 but the
flash storage can report something different than the real numbers. Some sizes are
available on the Linaro wiki11. Linaro­image­tools is now able to generate images
with a correct alignment12.

3.1.7.4 Testing

Collabora will add tests to LAVA for testing how FAT32 and Btrfs behave on the
i.MX6 under stress, as well as for tuning the above mentioned parameters for
reliability and performance.

3.1.8 ROOT FILESYSTEM

The approach will be to mount as many parts of the root filesystem read-only as
possible such that the only writes to it would be during updates. This would
reduce the chances of catastrophic filesystem corruption in the event of power
failure and invalid system file modification by bugs in system or application
software. The only partition that is to be mounted writable is the user partition
that will be mounted in /home. All the other writable parts of the / filesystem will
be backed by tmpfs, located in RAM. We will avoid the lack of space problem by
only storing small files in tmpfs or files which don't take space (lock files, socket
files). Bigger files such as programs, libraries, configuration files will remain on
disk and available read-only.

See the System Updates and Rollback design for detailed information about the
robustness of the update process.

3.1.9 OTHER FILESYSTEMS

The system should be able to function even if mounting one or more of the non-
essential file systems fails. Even if the system is able to keep running, it would do
so with reduced functionality, so some recovery action would need to be taken in
order to regain the lost functionality. The system should try to recover
automatically as far as possible. In the case of unrecoverable system failure, the
user can be instructed at system boot to request technical assistance at a service

10http://processors.wiki.ti.com/index.php/Get_the_Flash_Erase_Block_Size
11https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
12https://bugs.launchpad.net/linaro-image-tools/+bug/626907

https://bugs.launchpad.net/linaro-image-tools/+bug/626907
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
http://processors.wiki.ti.com/index.php/Get_the_Flash_Erase_Block_Size

shop.

3.1.10 MAIN STORAGE

In case of power loss, the flash media can become corrupted due to how writes
are performed. Apertis will be notified via a GPIO signal 100 milliseconds before
power is completely lost, in order to give the flash controller time to commit to
non-volatile media what is in its cache.

Given the short time available and the general slowness of flash devices when
writing, we recommend that the signal is handled in the kernel, because
userspace will not have enough time to react (depending on the load and the
scheduler, it could take from 10 ms to 100 ms for the signal to start being
processed by a userspace process). A device driver should be written that, when
the GPIO signal is received:

1. stops flushing dirty pages to the drive,

2. tells the flash controller to flush its caches to permanent storage, and

3. starts the shutdown sequence.

The device driver will start handling the signal 10-100 µs after the GPIO is
activated. In spite of this, if the device has big caches and is slow to write,
corruption of arbitrary data blocks can still happen.

In general, drive health data should be monitored so that the user can be notified
about disk failures which require a garage visit for hardware replacement.

As no more dirty pages will be flushed to the storage device when the GPIO signal
is received, the data in the page cache will be lost. To reduce the amount of data
that could be lost, eMMC reliable writes can be used, and the page cache
configuration can be tuned. But it has to be noted that use of reliable writes and
reducing the amount of in-flight data is a trade-off against performance that can
be quantified only on the final hardware configuration through direct
experimentation.

3.1.11 REMOVABLE DEVICES

External devices that can be removed at any moment are not reliable for writing
of critical data. In addition to the problem of corruption of files being written, wear
leveling by the controller might corrupt unrelated blocks which might even
contain the directory table or the file allocation table, rendering the whole
partition unusable.

The quality of external storage devices such as flash drives varies greatly, in some
cases the device will unexpectedly stop responding to commands, or data will be
lost. Applications that write to removable drives must be robust enough to be able
to continue in the face of such errors with minimal loss of functionality.

As mentioned above in the filesystem section, the safest way to use removable
drives is by restricting the processes that can write to the drive, and minimizing
the time-window for the writes. For that to be practical, there should be a system
service that is the only one allowed to write to removable devices and that would

accept requests from applications, remount the device read-write, write the new
contents, then remount read-only again.

Since, for interoperability reasons, the filesystem used in removable devices is
FAT32, in addition to the issues mentioned in this section, the robustness
considerations that were explained earlier in section 3.1.7 also apply.

3.2 MITIGATING THE EFFECTS OF LACK OF DISK SPACE

In order to reduce the chances that the system will find itself in a situation where
lack of disk space is problematic, it is recommended that available disk space is
monitored and applications notified so they can react and modify their behavior
accordingly. Applications may chose to delete unused files, delete or reduce cache
files or purge old data from their databases.

The recommended mechanism for monitoring available disk space is for a
daemon running in the user session to call statvfs (2) periodically on each mount
point and notify applications with a D-Bus signal. Example code can be find in the
GNOME project13, which uses a similar approach (polling every 60 seconds).

Additionally, so error messages can be stored also in low-space conditions, it is
recommended that journald is configured to leave an amount of free space
smaller than the reserved blocks of the filesystem that backs the log files. This
way, applications will still be able to log messages after applications have
consumed all the sace available to them.

In case applications cannot be trusted to properly delete non-essential files, a
possibility would be for them to state in their manifest where such files will be
stored, so the system can delete them when needed.

In order to make sure that malfunctioning applications cannot cause disruption by
filling filesystems, it would be required that each application writes to a separate
filesystem.

It may be worth noting that temporary directories should be emptied on reboot.

3.3 RESOURCE MANAGEMENT

The robustness goal of resource management is to prevent one or more
applications from disrupting basic functionality due to excessive resource
consumption. The basic mechanism for this is to allocate resources in such a way
that applications cannot starve services in the base system. This is to be achieved
firstly by changing the resource allocation policy to give higher priority to
services, and secondly by limiting the maximum amount of resources that an
application can consume at a time.

Resource limits are capable of helping ensure a process does not render the whole
system unresponsive. However, some design decisions also play an important role
here. If the user has no way to kill the process that became too slow or

13http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-
space.c#n693

http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693

unresponsive, the user experience will suffer. The same goes for the case in which
an application gets stuck into a failing scenario, such as a web browser
automatically loading pages that were open when the browser closed
unexpectedly. For these reasons care must be exercised while designing the user
interactions for both the system chrome and applications to be sure such cases
are addressed.

If, despite throttling, some processes still impact the overall user experience
negatively because of excessive resource usage, there is the option of identifying
those processes and terminating them. Collabora recommends against this
because it is very difficult to automatically distinguish between processes that use
large amounts of resources due to malfunction or maliciousness and processes
that use excessive resources for legitimate purposes. Killing the wrong process
may free up resources but is likely to be perceived by the user as a severe defect
in the overall user experience.

As a general recommendation, for optimal responsiveness, applications should not
block the UI thread when calling anything that is not assured to return almost
immediately, which includes all local or remote I/O operations. When the potential
duration of an operation is a considerable portion of the commonly-considered
maximum acceptable response time (100 ms), it should be done asynchronously.
GLib contains asynchronous APIs14 for I/O in its file15 and streaming16 classes.

3.3.1 CPU

To make sure that important processes have available CPU cycles even when
malfunctioning or malicious applications monopolise the CPU, it is recommended
to set task scheduler priorities according to the importance of processes. Systemd
can do this for services by setting the CPUSchedulingPriority17 property in the
service unit file of the process. When the process described by the service unit file
starts new processes, they stay in the same cgroups and they keep the same
CPUSchedulingPriority.

At present (Q1 2014), systemd manages the user session on target images but
not on the SDK. With the user session managed by systemd, the priorities of
applications are no longer set by the application launcher using
sched_setscheduler (2)18.

If there are processes that need real-time capabilities, or that should have very
low CPU access, the CPUSchedulingPolicy property can be used to change to the
rr (real-time) or idle scheduling policies. Real-time access for a process should
be carefully considered and tested because it can have a negative impact on the
process and even the entire system.

For identifying processes that use an excessive amount of CPU, the cpuacct

14http://developer.gnome.org/gio/stable/async.html
15http://developer.gnome.org/gio/stable/file_ops.html
16http://developer.gnome.org/gio/stable/streaming.html
17http://0pointer.de/public/systemd-man/systemd.exec.html
18http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://0pointer.de/public/systemd-man/systemd.exec.html
http://developer.gnome.org/gio/stable/streaming.html
http://developer.gnome.org/gio/stable/file_ops.html
http://developer.gnome.org/gio/stable/async.html

cgroups controller19 can be used.

Though it is not recommended to automatically terminate local applications with
excessive CPU usage, it makes sense for web pages. Web pages are not screened
before they execute on the system, hence it is important to ensure that their
ability to disrupt system functionality is minimised. For this, WebKit can detect
when a block of JavaScript code has been executing for too long, pause it, and
give the embedding application the possibility of canceling the execution of this
block of code. Collabora has added API to WebKit-Clutter for this.

3.3.2 I/O

Similar to CPU usage, Collabora recommends giving priority to important
processes when there is contention for I/O bandwidth. Collabora recommends that
important services have a value for the property IOSchedulingPriority lower
than 4 (the default). If, for any reason, some applications need priorities other
than the default, the application launcher can use the ioprio_set (2) syscall20 to
change their priority. When the process described by the service unit file starts
new processes, they stay in the same cgroups and they keep the same
IOSchedulingPriority.

3.3.3 MEMORY

Collabora recommends putting a single limit on the amount of memory that the
whole application set can allocate so a fair reserve is left for the base software.
This limit should be just big enough so that the Apertis instance never reaches the
“out of memory” (OOM)21 condition at the system level. For example, if the total of
memory available for processes is 1GB, there is no swap, and we know that the
services in the base system should need a maximum of 300MB, then all
applications should belong to a cgroup that is limited to 700MB of memory.

In specific cases, it may make sense to put a different limit on a specific
application, but it can easily be counterproductive and cause a waste of memory.

Something else worth doing is to make sure that the OOM killer22 selects
applications for killing instead of system services. For this, the systemd property
OOMScoreAdjust can be used to reduce the chances that a service will be killed.
For applications, it is recommended that the application launcher sets its
/proc/<pid>/oom_score_adj23 to be higher than 0. The ideal value may vary
depending upon the importance of each application.

With the example setup mentioned before, the OOM killer will terminate the
bulkiest application when one of these conditions are met:

• The total memory taken by applications all together is going to increase
over 700MB.

19http://www.kernel.org/doc/Documentation/cgroups/cpuacct.txt
20http://www.kernel.org/doc/man-pages/online/pages/man2/ioprio_set.2.html
21http://en.wikipedia.org/wiki/Out_of_memory
22http://lwn.net/Articles/317814/
23http://www.kernel.org/doc/Documentation/filesystems/proc.txt

http://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://lwn.net/Articles/317814/
http://en.wikipedia.org/wiki/Out_of_memory
http://www.kernel.org/doc/man-pages/online/pages/man2/ioprio_set.2.html
http://www.kernel.org/doc/Documentation/cgroups/cpuacct.txt

• The total memory taken by all processes (services plus applications) is
going to increase over 1GB.

To make better use of the available memory, it's recommended that applications
listen to the cgroup notification memory.usage_in_bytes24 and when it gets close
to the limit for applications, start reducing the size of any caches they hold in
main memory. It may be good to do this inside the SDK and provide applications
with a glib signal that they can listen for.

3.3.4 NETWORK QUEUE

Processes would be classified into cgroup classes such as:

• Interactive (VoIP, internet radio)

• Semi-interactive (web pages, maps)

• Asynchronous (mail, app notifications, etc)

• Bulk (downloads, system updates)

Cgroup controllers are only used for classification of outgoing packets.
NETPRIO_CGROUP25 and NET_CLS_CGROUP26 would be used for setting the priority,
and for classifying processes into cgroups. By thus tagging packets with the
cgroup of applications and services, tc27 can be used to set limits to the rate at
which processes send packets28.

Bandwidth rate-limiting would be required to ensure interactive streams do not
get starved by lower priority streams.

There is little we can do about latency for applications like VoIP, since even when
the bandwidth is sufficient, the bottlenecks are the hardware buffers, queues, and
scheduling on various devices outside the control of our system. This is an open
problem in networking, and a large part of it is related to Bufferbloat29.

Note that there's no robustness issue that can be prevented by limiting the rate at
which processes receive incoming packets.

3.3.5 GPU

As explained in the WebGL design, the GL_EXT_robustness30 extension provides a
mechanism by which the watchdog in the GL implementation can reset the GPU,
invalidating all GL contexts and thus stopping all GPU activity.

Unfortunately, this only prevents denial of service (DoS) conditions caused by
WebGL, because processes must opt-in to use this extension. Thus, applications
may intentionally or unintentionally ignore the extension and continue

24http://www.kernel.org/doc/Documentation/cgroups/memory.txt
25http://lwn.net/Articles/474695/
26http://docs.fedoraproject.org/en-US/Fedora/16/html/Resource_Management_Guide/sec-

net_cls.html
27http://lartc.org/manpages/tc.txt
28http://lartc.org/howto/
29http://en.wikipedia.org/wiki/Bufferbloat
30http://www.khronos.org/registry/gles/extensions/EXT/EXT_robustness.txt

http://www.khronos.org/registry/gles/extensions/EXT/EXT_robustness.txt
http://en.wikipedia.org/wiki/Bufferbloat
http://lartc.org/howto/
http://lartc.org/manpages/tc.txt
http://docs.fedoraproject.org/en-US/Fedora/16/html/Resource_Management_Guide/sec-net_cls.html
http://docs.fedoraproject.org/en-US/Fedora/16/html/Resource_Management_Guide/sec-net_cls.html
http://lwn.net/Articles/474695/
http://www.kernel.org/doc/Documentation/cgroups/memory.txt

monopolising the GPU. Within the web browser, scripts that use WebGL and take
over the GPU will be interrupted and terminated by the browser.

If it runs its own GL implementation, then it could monitor GPU resource usage
and reset those contexts that seem to be disrupting the rest of the system. It
could notify processes via the GL_EXT_robustness extension and even terminate
them if they ignore the context reset notifications.

3.3.6 ACCOUNTING

Besides setting limits on resources, cgroups also allows to retrieve resource usage
metrics. As examples, for CPU usage the cpuacct cgroup controller contains the
usage, stat and usage_percpu reports; the memory controller provides usage data
in its stat report; the blkio controller has throttle.io_serviced and
throttle.io_service_bytes.

4 USB UNDERVOLTAGE
In the case that the system momentarily isn't able to power connected USB
devices such as MP3 players or smartphones due to voltage drops, the system will
power off and on again these devices, so that the connection gets reestablished
and the user experience gets affected as little as possible.

5 RISKS
• FAT32 is fundamentally unreliable, specially on removable devices.

• Robustness of flash media varies greatly and the user may not be able to
distinguish failures caused by the hardware from failures due to the
software.

• Excessively-low resource limits for applications can lead to resource
waste; excessively-high may be less effective in avoiding DoS. There may
not exist a good middle point.

• Heuristics used to determine when to kill a process with excessive
resource usage are not perfect and can cause major failure from the user
point of view.

• If Vivante does not implement GL_EXT_robustness properly, web pages
could DoS the whole system.

• Bugs in the OpenGL implementation can lead to instability, data loss and
privacy breaches that can be triggered from web pages.

• If the flash media loses power while a block is open for writing, it is
possible that several random blocks elsewhere in the same drive will be
corrupted. This can affect other filesystems, even if they are mounted
read-only.

6 DESIGN NOTES
The following items have been identified for future investigation and design work
later in the project and are thus not addressed in this design:

• Vulnerability to DoS attacks in D-Bus and proposed solutions.

• Optimization of the SQLite configuration parameters for the specific
filesystems in use in Apertis.

No updates as of March 2014.

7 BTRFS OVERVIEW
The most powerful feature of Btrfs31 is the fact that all information (data +
metadata) is stored in the same basic data structures, and all modification of
these data structures is performed in a copy-on-write (CoW) fashion.

Since all information on disk is stored using the same type of data structure, this
allows metadata and data to share features such as checksumming and striping.

This combined with the fact that Btrfs uses CoW while modifying all information,
means that in theory, the filesystem is always consistent if the storage device
supports “Force Unit Access”32 correctly. However, in practice, filesystem bugs, a
lack of maturity in the code, and other (unforeseen) problems may prevent this.

7.1 BTRFS ROBUSTNESS SUPPORTING FEATURES

7.1.1 CHEAP, FAST, AND ATOMIC SNAPSHOTS AND ROLLBACK

All snapshots in Btrfs are CoW copies of the subvolume being snapshotted with an
incremented reference count for the blocks. As a result, creating snapshots is very
fast, and they take up a negligible amount of space. Just like every other
operation, the snapshot is created atomically by the use of transactions and
sequenced flushes. Further, all snapshots are actually just subvolumes, and hence
can be mounted on their own.

Unlike LVM2, which creates snapshots in the form of block devices that can be
mounted, Btrfs creates snapshots in the form of subvolumes, which are represented
as subdirectories.

Even though snapshots are displayed in a subdirectory they are not "owned" by
that subvolume. Snapshots and subvolumes are identical in Btrfs, and are first­class
citizens with respect to other subvolumes. This means that the default subvolume
can be set at any time. The change will be made the next time the filesystem is
mounted. All the subvolumes, except the top­level subvolume, can also be
deleted; irrespective of their relationships with each other.

7.1.2 REPAIR AND RECOVERY

If, for any reason, the root node or the superblock gets corrupted and the filesystem
cannot be mounted, mounting in recovery mode will make btrfs check the
superblock (or alternate superblocks if the superblock is also corrupted) for
alternate roots from previous transactions. This is possible because all modifications
to the Btrfs trees are done in a CoW manner and existing roots are not deleted. The
filesystem stores the last four roots as a backup for the recovery option.

31https://btrfs.wiki.kernel.org
32http://en.wikipedia.org/wiki/SCSI_Write_Commands#Write_.2810.29

http://en.wikipedia.org/wiki/SCSI_Write_Commands#Write_.2810.29
https://btrfs.wiki.kernel.org/

7.1.3 CHECKSUMMING

The header of every chunk of space in Btrfs has space for 32-bytes of checksums
of the chunk itself. In addition, there is a checksum tree which maintains
checksums for each block of data. Since the data as well as the metadata blocks
are referenced in the checksum tree, all information in the filesystem is
checksummed.

Currently, Btrfs uses the CRC-32 checksum algorithm, but there are plans to
upgrade that, and add the option to set the checksum algorithm when the
filesystem is created.

	Document Change Log
	1 Introduction
	2 Requirements
	3 Approach
	3.1 Application data
	3.1.1 General guidelines
	3.1.2 SQLite
	3.1.3 Tracker
	3.1.4 User settings
	3.1.5 Media
	3.1.6 Caches
	3.1.7 Filesystems
	3.1.7.1 Filesystem options
	3.1.7.2 Checksumming
	3.1.7.3 Alignment
	3.1.7.4 Testing

	3.1.8 Root filesystem
	3.1.9 Other filesystems
	3.1.10 Main storage
	3.1.11 Removable devices

	3.2 Mitigating the effects of lack of disk space
	3.3 Resource management
	3.3.1 CPU
	3.3.2 I/O
	3.3.3 Memory
	3.3.4 Network queue
	3.3.5 GPU
	3.3.6 Accounting

	4 USB undervoltage
	5 Risks
	6 Design notes
	7 BTRFS Overview
	7.1 BTRFS robustness supporting features
	7.1.1 Cheap, fast, and atomic snapshots and rollback
	7.1.2 Repair and recovery
	7.1.3 Checksumming

