
Apertis

Software
Development Kit

Design
Author: Travis Reitter
Contributors: Martin Barrett, Héctor Orón Martínez, Sjoerd

Simons, Daniel Stone, Gustavo Noronha Silva,
Abner Silva, Tomeu Vizoso

Version: 1.0.2
Status: Final
Date: 16 November 2015
Last Reviewer: Luis Araujo

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

1.0.2 2015-11-16 • Update to new name Apertis
• Remove file custom properties (metadata)

1.0.1 2014-12-15 • Updated to new template

1.0.0 2012-08-11 • Changed status to “final”

0.10.1 2012-07-17 • Accepted changes from version 0.10.0

0.10.0 2012-07-12 • Relocated section “Cross-compilation” to the “Apertis
Build and Integration Design”

0.9.1 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.9.0 2012-04-25 • Added section on third-party applications requesting
permissions in their manifest files

• Relocated sections to Build and Integration document
since they fit better there:
◦ Reference System Image Composition
◦ Documentation in System Images
◦ Derived SDK Images (renamed “Derived System

Images”)
◦ Open Source Placeholder Components

• Clarified that llvmpipe performance is dependent upon
host machine specifications

• Clarified that the Build and Integration team will be using
debootstrap (not multistrap).

• Added discussion of risks in sourcing multi-touch
hardware in the section Hardware Sourcing Risks.

• Described Install to Target Eclipse plugin and its use in
the developer workflow
◦ Explained that the Debugging and SDK images won't

check for app signatures
• Described Remote App Debugging Eclipse plugin
• Add AppArmor profile validation to App Validation Tool
• Error: Reference source not foundError: Reference source

not found: Explained why the sysroot will be distributed as
an archive, not a Debian package

• 6.3.3 Sysroot Updater: added this section
• 9.2 App Validation Tool: noted that this will be specified in

greater detail in another document

0.3.4 2012-03-23 • Correct the usage of the various system images for quality
assurance

• Link to the llvmpipe evaluation videos

0.3.3 2012-03-22 • Clean up some punctuation and typos

• Clarify that pinch/zoom and rotate do have position and
provide examples where this might be used

• Improve Header 3 formatting

0.3.2 2012-03-21 • Elaborated on development workflow (for the on-device
development use case)

• Described setup of Mutter within Xephyr within VirtualBox
and its performance characteristics

• Described the process and SDK tools required for third-
party application validation

0.3.1 2012-03-20 • Replaced all instances of “firmware” and “firmware image”
with “system image”. This is to avoid confusion with
firmware loaded by the system to enable specific
hardware.

• Added gprof to tools included in Debugging and SDK
images and organized tools by category

• Explained the role of platform libraries and referred to the
Supported API document for greater explanation

• Explained how QA will use the various images for its tests
• Note that the llvmpipe driver implements more of OpenGL

than the swrast driver
• Provided number comparisons for the performance of the

swrast driver vs. the llvmpipe driver in VirtualBox
• Added section on open source placeholder components

0.3.0 2012-03-19 • Noted success with an Apple Magic Trackpad's multi-
touch events within a VirtualBox Debian guest

• Removed claim that pinch/zoom doesn't factor in position
• Included man pages amongst Reference SDK

documentation
• Clarified that Reference Debugging Images will also be

used for performance-critical graphics work
• Redefined “SDK API” and added “SDK Additions” for

clarity
• Referenced the build and integration document for system

image licensing details
• Included links to the build and debugging tools
• Added an explanation as to why Debian package structure

has historically required a sysroot approach to cross-
compilation

0.1.8 2012-02-27 • Changed strategy for simulating multi-touch events and
added details and trade-offs

0.1.7 2012-02-20 • Added section on 3D acceleration in VirtualBox
• Added section on simulating multi-touch events

0.1.6 2012-02-08 • Consistently name the Target Simulator
• Fix a typo

• Remove description of Eclipse cross-compilation plug-in,
as it would be more work than it's worth

0.1.5 2012-02-01 • Describe new cross-compilation Eclipse plug-in
• Add details about workflow for cross-compiling code within

the SDK

0.1.4 2012-01-31 • Add section on cross-compilation

0.1.3 2012-01-30 • Add change log
• Add and use definition for “disruptive releases” in place of

the too-vague “major releases”
• Split the reference image descriptions into their own

subsections and expanded upon them (including
recommended packages to be added to specific images)

• Added a section on documentation within the images
• Clarified Collabora's access needs for system image build

processes and internal libraries and applications.
• Renamed “Reference Development Image” to “Reference

Debugging Image” and “Development Image” to
“Debugging Image” to clarity that their main purposes will
be for debugging, not development.

• Clarify that the Reference Debugging and Reference SDK
images simply have more packages pre-installed
compared to the Reference Platform image and only exist
for convenience.

• Expand upon the details for added components in the
derived system images

Table of Contents
Document Change Log...2
1 Definitions...6
2 Software Development Kit (SDK) Purpose...7
3 API/ABI Stability Guarantees...8
4 Reference System Image Composition...9
5 System Image Software Licenses..10
6 Development Workflow...11

6.1 Typical Workflow...11
6.2 On-device Workflow...11
6.3 Workflow-simplifying Plugins..12

6.3.1 Install to Target..12
6.3.2 Remote App Debugging...12
6.3.3 Sysroot Updater...12

7 3D acceleration within VirtualBox...13
8 Simulating Multi-touch in VirtualBox...14

8.1 Software-based solution...14
8.1.1 Multi-touch Gesture Generator..14
8.1.2 Uinput Gesture Device Xorg Driver...16
8.1.3 X11 Multi-touch Event Handling..17

8.2 Hardware-based solution..17
8.2.1 Hardware Sourcing Risks...17

9 Third-party Application Validation Tools..19
9.1 Two-step Application Validation Process...19
9.2 App Validation Tool...19

10 General approach to third-party applications...21

Index of Illustrations
Illustration A: Example Gesture Generator user interface window.........................14
Illustration B: On-screen graphics while generating gestures................................16

1 DEFINITIONS
◦ Application Binary Interface (ABI) Stability: the library guarantees

API stability and further guarantees dependent applications and libraries
will not require any changes to successfully link against any future
release. The library may add new public symbols freely.

◦ Application Programming Interface (API) Stability: the library
guarantees to not remove or change any public symbols in a way that
would require dependent applications or libraries to change their source
code to successfully compile and link against later releases of the library.
The library may add new public symbols freely. Later releases of the API-
stable library may include ABI breaks which require dependent
applications or libraries to be recompiled to successfully link against the
library. Compare to ABI Stability.

◦ Backwards compatibility: the guarantee that a library will not change
in a way that will require existing dependent applications or libraries to
change their source code to run against future releases of the library.
This is a more general term than ABI or API stability, so it does not
necessarily imply ABI stability.

◦ Disruptive release: a release in which backwards compatibility is
broken. Note that this term is unique to this project. In some
development contexts, the term “major release” is used instead.
However, that term is ambiguous in general.

See additional Definitions in the document “Apertis Build and Integration”.

2 SOFTWARE DEVELOPMENT KIT (SDK) PURPOSE
The primary purpose of the special SDK system image will be to enable Apertis
application and third-party library development. It will include development tools
and documentation to make this process as simple as possible for developers. And
a significant part of this will be the ability to run the SDK within the VirtualBox PC
emulator. VirtualBox runs on ordinary x86 hardware which tends to make
development much simpler than a process which requires building and running in-
development software directly on the target hardware which will be of
significantly lower performance relative to developer computers.

3 API/ABI STABILITY GUARANTEES
Collabora will carry along open source software components' API and ABI stability
guarantees into the Apertis Reference SDK API. In most cases, this will be a
guarantee of complete API and ABI stability for all future releases with the same
major version. Because these portions of Apertis will not be upgraded to later
disruptive releases, these portions will maintain API and ABI stability at least for
each major release of Apertis.

The platform software included in the Reference system images will be in the form
of regular Debian packages and never in the form of application-level packages,
which are described in the “Apertis Supported API” document. Collabora will
manage API/ABI stability of the platform libraries and prevent conflicts between
libraries at this level.

See the “Apertis Supported API” document for more details of specific
components' stability guarantees and the software management of platform, core
application, and third-party application software.

4 REFERENCE SYSTEM IMAGE COMPOSITION
See the document “Apertis Build and Integration”, section “Reference System
Image Composition”.

5 SYSTEM IMAGE SOFTWARE LICENSES
See the document “Apertis Build and Integration” for details on license checking
and compliance of software contained in the system images.

6 DEVELOPMENT WORKFLOW

6.1 TYPICAL WORKFLOW

Most developers working on specific libraries or applications will not be strictly
dependent upon the exact performance characteristics of the device hardware.
And even those who are performance-dependent may wish to work within the SDK
when they aren't strictly tuning performance, as it will yield a much shorter
development cycle.

For these most-common use cases, a typical workflow will look like:

1. modify source code in Eclipse

2. build (for x86)

3. smoke-test within the Target Simulator

4. return to step 1. if necessary

In order to test this code on the actual device, the code will need to be cross-
compiled (see the document “Apertis Build and Integration Design”, section “App
cross-compilation”). To do so, the developer would follow the steps above with:

5. run Install to Target Eclipse plugin (see below)

6. test package contents on device

7. return to step 1. if necessary

The development workflow for the Reference and derived images themselves will
be much more low-level and are outside the scope of this document.

6.2 ON-DEVICE WORKFLOW

Some work, particularly performance tuning and graphics-intense application
development, will require testing on a target device. The workflow above handles
this use case, but developing on a target device can save the time of copying files
from a development machine to the device.

This workflow will instead look like:

1. modify source code as needed

2. run Install to Target Eclipse plugin

3. test package contents on device

4. if debugging is necessary, either

a) run Remote App Debugging Eclipse plugin; or

b) open secure shell (ssh) connection to target device for multi-process or
otherwise-complex debugging scenarios

5. return to step 2. if necessary

6.3 WORKFLOW-SIMPLIFYING PLUGINS

Some of the workflow steps above will be simplified by streamlining repetitive
tasks and automating as much as possible.

6.3.1 INSTALL TO TARGET

This Eclipse plugin will automatically:

a) build the cross-architecture Apertis app bundle

b) copy generated ARM package to target

c) Install package

It will use a sysroot staging directory (as described in the document “Apertis Build
and Integration Design”, section “App cross-compilation”) to build the app bundle
and SSH to copy and remotely and install it on the target.

App bundle signature validation will be disabled in the Debugging and SDK
images, so the security system will not interfere with executing in-development
apps.

6.3.2 REMOTE APP DEBUGGING

This Eclipse plugin will connect to a target device over SSH and, using information
from the project manifest file, execute the application within GDB. The user will be
able to run GDB commands as with local programs and will be able to interact
with the application on the device hardware itself.

This plugin will be specifically created for single application debugging.
Developers of multi-process services will need to connect to the device manually
to configure GDB and other tools appropriately, as it would be infeasible to
support a wide variety of complex setups in a single plugin.

6.3.3 SYSROOT UPDATER

This Eclipse plugin will check for a newer sysroot archive. If found, the newer
archive will be downloaded and installed such that it can be used by the Install to
Target plugin.

7 3D ACCELERATION WITHIN VIRTUALBOX
Apertis will depend heavily on the Clutter library for animations in its toolkit and
for custom animations within applications themselves. Clutter requires a working
3D graphics stack in order to function. Without direct hardware support, this
requires a software OpenGL driver, which is historically very slow. Our proposed
SDK runtime environment, VirtualBox, offers experimental 3D hardware “pass-
through” to achieve adequate performance. However, at the time of this writing,
this support is unreliable and works only on very limited host hardware/software
combinations.

We propose resolving this issue with the new “llvmpipe” software OpenGL driver
for the Mesa OpenGL implementation. This is the community-supported solution
to replace the current, significantly-slower, “swrast” software driver. Both the
upcoming versions of Fedora and Ubuntu Linux distributions will rely upon the
“llvmpipe” driver as a fallback in the case of missing hardware support. The latest
development version of Ubuntu 12.04, which Collabora is developing our
Reference system images against, already defaults to “llvmpipe”. Additionally, the
“llvmpipe” driver implements more portions of the OpenGL standard (which
Clutter relies upon) than the “swrast” driver.

In initial testing with an animated Clutter/Clutter-GTK application, llvmpipe
performance was more than adequate for development purposes. In a VirtualBox
guest with 2 CPU cores and 3 GiB of RAM, demo applications using the Roller
widget displayed approximately 20-30 frames per second and had very good
interactivity with the llvmpipe driver. In comparison, the same program running
with the swrast driver averaged 4 frames per second and had very poor
interactivity.

While this approach will not perform as well as a hardware-supported
implementation, and will vary depending on host machine specifications, it will be
the most reliable option for a wide variety of VirtualBox host operating system,
configuration, and hardware combinations.

8 SIMULATING MULTI-TOUCH IN VIRTUALBOX
Because Apertis will support multi-touch events and most VirtualBox hosts will
only have single pointing devices, the system will need a way to simulate multi-
touch events in software. Even with adequate hardware on the host system,
VirtualBox does not support multiple cursors, so the simulating software must be
fully-contained within the system images themselves.

8.1 SOFTWARE-BASED SOLUTION

We propose a software-based solution for generating multi-touch events within
the SDK. This will require a few new, small components, outlined below.

In the intended usage, the user would use the Multi-touch Gesture Generator to
perform a gesture over an application running in the Target Simulator as if
interacting with the hardware display(s) in an Apertis system. The Gesture
Generator will then issue commands through its uinput device and the Uinput
Gesture Device Xorg Driver will use those commands to generate native X11
multi-touch events. Applications running within the Target Simulator will then
interpret those multi-touch events as necessary (likely through special events in
the Apertis application toolkit).

8.1.1 MULTI-TOUCH GESTURE GENERATOR

This will be a very simple user interface with a few widgets for each type of
gesture to generate. The developer will click on a button in the generator to start
a gesture, then perform a click-drag anywhere within VirtualBox to trigger a set of
multi-touch events. The generator will draw simple graphics on the screen to
indicate the type and magnitude of the gesture as the developer drags the mouse
cursor.

Illustration A: Example Gesture Generator user
interface window

We anticipate the need for two gestures commonly used in popular multi-touch
user interfaces:

◦ Pinch/zoom: the movement of a thumb and forefinger toward (zoom-
out) or away (zoom-in) from each other. This gesture has a magnitude
and position. The position allows, e.g., a map application to zoom in on
the position being pinched rather than requiring a separate zoom into
the center of the viewable area, then a drag of the map.

▪ Zoom-in: simulated by initiating the pinch/zoom gesture from the
Gesture Generator, then click-dragging up-right. The distance
dragged will determine the magnitude of the zoom.

▪ Zoom-out: the same process as for zoom-in, but in the opposite
direction

◦ Rotate: the movement of two points around an imaginary center
point. Can be performed either in a clockwise or counter-clockwise
direction. This gesture has a magnitude and position. The position
allows, e.g., a photo in a gallery app to be rotated independent of the
other photos.

▪ Clockwise: simulated by initiating the rotate gesture, then click-
dragging to the right. This can be imagined as drag affecting the
top of a wheel.

▪ Counter-clockwise: the same process as for clockwise, but in the
opposite direction.

Additional gestures could be added during the specification process, if necessary.

Upon the user completing the simulated gesture, the Gesture Generator would
issue a small number of key or movement events through a special uinput device
(which we will refer to as the Uinput Gesture Device). Uinput is a kernel feature
which allows “userland” software (any software which runs directly or indirectly on
top of the kernel) to issue character device actions, such as key presses, releases,
two-dimensional movement events, and so on. This uinput device will be
interpreted by the Uinput Gesture Device Xorg Driver.

8.1.2 UINPUT GESTURE DEVICE XORG DRIVER

This component will interpret the input stream from our Uinput Gesture Device
and generate X11 multi-touch events. These events would, in turn, be handled by
the windows lying under the events.

Illustration B: On-screen graphics while generating gestures

8.1.3 X11 MULTI-TOUCH EVENT HANDLING

Windows belonging to applications running within the Target Simulator will need
to handle multi-touch events as they would single-touch events, key presses, and
so on. This would require to add support for multi-touch events in the Apertis
application toolkit for applications to simply handle multi-touch events the same
as single-touch events.

8.2 HARDWARE-BASED SOLUTION

An alternative to the software-based solution above would be to use a hardware
multi-touch pad on the host machine. This is a simpler solution requiring less
original development though it brings a risk of Windows driver issues which would
be outside of our control. Because of this, we recommend Collabora perform
further research before finalizing upon this solution if this is preferred over the
Software-based solution.

The touch pad hardware would need to be well-supported in Linux but not
necessarily the host operating system (including Windows) because VirtualBox
supports USB pass-through. This means that output from the touch pad would
simply be copied from the host operating system into VirtualBox, where Xorg
would generate multi-touch events for us.

The best-supported multi-touch device for Linux is Apple's Magic Trackpad. This
device uses a Bluetooth connection. Many Bluetooth receivers act as USB devices,
allowing pass-through to VirtualBox. In case a host machine does not have a built-
in Bluetooth receiver or has a Bluetooth receiver but does not route Bluetooth
data through USB, an inexpensive Bluetooth-to-USB adapter could be used.

Collabora has verified that multi-touch gestures on an Apple Magic Trackpad
plugged into a Linux host can be properly interpreted within Debian running
within VirtualBox. This suggests that a hardware-based solution is entirely
feasible.

8.2.1 HARDWARE SOURCING RISKS

Collabora investigated risks associated with selecting a single hardware provider
for this multi-touch solution. The known risks at this point include:

1. Apple has a history of discontinuing product lines with little warning

2. As of this writing, there appear to be few alternative multi-touch pointing
devices which are relatively inexpensive and support arbitrary multi-touch
movements

In the worst case scenario, Apple could discontinue the Magic Trackpad or
introduce a new version which does not (immediately) work as expected within
Linux. With no immediate drop-in replacement for the Magic Trackpad, there
would not be a replacement to recommend internally and to third-party
developers using the Apertis SDK.

However, there are several mitigating factors that should make these minor risks:

1. Inventory for existing Magic Trackpads would not disappear immediately
upon discontinuation of the product

2. Discontinuation of a stand-alone multi-touch trackpad entirely is very
unlikely due to Apple's increasingly-strong integration of multi-touch
gestures within iOS and Mac OS itself.

3. In case Apple replaces the Magic Trackpad with a Linux-incompatible
version, there is significant interest within the Linux community to fix
existing drivers to support the new version in a timely manner. For
instance, Canonical multi-touch developers use the Magic Trackpad for
their development and will share Apertis's sourcing concerns as well.

4. As an ultimate fallback, the Multi-touch Gesture Generator can be
recommended, described above, as an alternative source of multi-touch
input.

9 THIRD-PARTY APPLICATION VALIDATION TOOLS

9.1 TWO-STEP APPLICATION VALIDATION PROCESS

The third-party application process will contain two main validation steps which
mirror the application submission processes for Android and iOS apps. The first,
SDK-side validation checks will be performed by a tool described below.
Developers may perform SDK-side validation as often as they like before
submitting their application for approval. This is meant to automatically catch as
many errors in an application as soon as possible to meet quality requirements for
application review.

The second step of the application validation process is to validate that an
application meets the app store quality requirements. It is recommended to set up
a process where new applications automatically get run through this same Eclipse
plugin as an initial step in review. This will guarantee applications meet the latest
automated validation checks (which may not have been met within the
developer's SDK if their Eclipse plugin were old). Developers will be able to easily
stay up-to-date with the validation tool by applying system package updates
within the SDK, so this difference can be minimized by a small amount of effort on
the developer's part. Applications which pass this initial check will then continue
to a manual evaluation process.

9.2 APP VALIDATION TOOL

To streamline the third-party application submission process (which will be
detailed in another document), Collabora will provide an Eclipse plugin to perform
a number of

SDK-side validation checks up on the application in development. Collabora
proposed checks are:

• Application contains valid developer signing key – developers must
create a certificate to sign their application releases so verifying the
source of application updates can be guaranteed. This check will ensure
that the certificate configured for the application meets basic
requirements on expiration date and other criteria.

• Manifest file is valid – the application manifest file, which will be used
in the software management of third-party applications on the platform,
must meet a number of basic requirements including a developer name,
application categories, permissions, minimum SDK API, and more.

• Application builds from cleaned source tree – this step will delete
files in the source tree which are neither included in the project nor
belong to the version control system and perform a full release build for
the ARMHF architecture. Build warnings will be permitted but build errors
will fail this check.

• AppArmor profile is valid – the application's AppArmor profile

definition must not contain invalid syntax or conflict with the Apertis
global AppArmor configuration

Third-party application validation will be specified in depth in another document.

10 GENERAL APPROACH TO THIRD-PARTY APPLICATIONS
In most cases, third-party applications should not need to explicitly validate their
access to specific system resources, delegating as much as possible to the SDK
API or to other parts of the system. Preferably, these applications will specify
system resource requirements in their manifest, such as permissions the
application needs to function, network requirements, and so on. The main
advantages of having these in the manifest file are using shared code to perform
some of the actual run-time resource requests.

Note that this strategy implies a trade-off between how simple it is to write an
application and how complex the supporting SDK and system components need to
be to provide that simplicity. That is to say, it often makes sense to impose
complexity onto applications, in particular when it's expected that only a few will
have a given requirement or use case. This general approach should be kept in
mind while designing the SDK and any other interfaces the system has with third-
party applications and their manifests.

	Document Change Log
	1 Definitions
	2 Software Development Kit (SDK) Purpose
	3 API/ABI Stability Guarantees
	4 Reference System Image Composition
	5 System Image Software Licenses
	6 Development Workflow
	6.1 Typical Workflow
	6.2 On-device Workflow
	6.3 Workflow-simplifying Plugins
	6.3.1 Install to Target
	6.3.2 Remote App Debugging
	6.3.3 Sysroot Updater

	7 3D acceleration within VirtualBox
	8 Simulating Multi-touch in VirtualBox
	8.1 Software-based solution
	8.1.1 Multi-touch Gesture Generator
	8.1.2 Uinput Gesture Device Xorg Driver
	8.1.3 X11 Multi-touch Event Handling

	8.2 Hardware-based solution
	8.2.1 Hardware Sourcing Risks

	9 Third-party Application Validation Tools
	9.1 Two-step Application Validation Process
	9.2 App Validation Tool

	10 General approach to third-party applications

