
Apertis

Connectivity

Design

Author: Gustavo Noronha Silva
Contributors: Sjoerd Simons, Mateu Batle and Gustavo

Padovan
Version: 1.1.1
Status: Final
Date: 5 November 2015
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

1.1.1 2015-11-05 • Replace SAC with Apertis
• Replace Secure Automotive Cloud with Apertis
• Delete obsolete document properties

1.1 2015-12-09 • Update to new template

1.0 2013-03-04 • Make the design final

0.10.0 2013-01-14 • Revised ConnMan-related sections to account for the
removal of the policy daemon

• Added a section about Range requests and how partial
downloads should be handled

• Removed chapter discussing Bluetooth stack strategies,
since it has been de-scoped for Collabora and will be
handled completely by Bosch

0.9.0 2012-11-26 • Remove extra “more” in Introduction Section
• Small rephrasing in the Network Management Section
• Added documentation about setting socket options
• Big rework of Sections 2.2 and 2.3 to reflect latest

upstream developments
• Added section about the Android connectivity policies
• Improved explanation about binding to the appropriate

network interface
• Change the title of the Tethering Section
• Listed 3G modem in the list of devices for tethering
• Improved explanation about Bluetooth PAN and DUN in

the Tethering Section
• Added more comments about measuring quality of

connections
• Improved description of the Bluetooth Section
• Added Serial Port Profile and Global Navigation Satellite

System Profile Sections
• Improved 7.3, 7.5, 7.6 and 7.7 Sections.
• Added details about echo and noise cancellation in

PulseAudio
• Added Section about the Bluetooth work inside GENIVI
• Added Section to discuss Bosch idea's of a “BlueZ

Wrapper”
• Added link to the UPnP web page.
• Improved GPS Sections

0.8.5 2012-05-29 • Update information about DUN client role being supported
by oFono (it is)

 0.8.4 2012-05-15 • Added information about the internal web service

0.8.3 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.8.2 2012-05-03 • Applied more review comments from Gustavo Padovan

0.8.1 2012-04-30 • Applied Gustavo Padovan's review comments
◦ Made clear 4.0 core is still in development, although in

the final stages
◦ Explain DUN support is only available on the server

role, client in the final stages of development
◦ Rework text about AVRCP to make it easier to explain

the controller role is the more important one and is
version 1.0 currently

◦ Explain we actually need HSP for VoIP and older
phones

0.8 2012-04-24 • Accepted changes from Travis' review
• Added discussion about the empty BlueZ wrapper to the

Bluetooth Support introduction
• Added mentions to iOS and Zune to the AVRCP/A2DP

discussion
• Added subsection about UPnP pointing to media/indexing

design
• Added information about libmtp to the section on

Downloading content

0.7 2012-04-17 • Accepted changes from Travis' review
• Expanded section on downloading media to include more

details on Apple legal matters
• Added information about usb and ipheth tethering
• Added information about the policy daemon and interface

binding
• New section about providing Internet connectivity to other

devices through DUN and WiFi
• New section about counting bytes transferred and finding

out what currently used bandwidth is

0.6 2012-03-28 • Correct MAP and AVRCP misinformation

0.5 2012-03-27 • More details on Bluetooth profiles
• Improve the GPS chapter to add more information about

GeoClue

0.4.0 2012-03-24 • Overhaul of Bluetooth section, mentioning all profiles
• More details on connection switching
• Incorporated more review comments

0.3.0 2012-03-22 • Sections on session management, tethering, Bluetooth,
Media Ingestion

• Rewording of the Real Time Communications section

0.2.0 2012-03-15 • Partial rewrite of the network management section
• Added an Introduction

0.0.90 2012-01-30 • Make the version and date special variables so they only
have to be updated once per version

• Add title page footer

Table of Contents
Document Change Log...2
1 Introduction...6
2 Network management..7

2.1 Switching to a different connection..8
2.2 Application requirements and expressing preferences..................................8
2.3 Binding to the appropriate network interface..9
2.4 Connections policies and store applications manifests................................10
2.5 Network-related events and how applications need to behave....................10

2.5.1 Continuing downloads...11
2.6 Connectivity policies on Android..12

3 Real-time communications..13
3.1 Traditional Telephony (GSM, SMS)..13

4 Tethering from mobile devices..14
5 Counting bytes and getting information about bandwidth.................................15
6 Providing Internet connectivity to other devices...16

6.1 A web server to provide information..16
7 Bluetooth support...17

7.1 Bluetooth 3.0, 4.0, High Speed, L2CAP, SDP, RFCOMM................................17
7.2 SPP...17
7.3 PAN and DUN..17
7.4 GOEP, OBEX...18
7.5 PBAP, MAP, OPP, SYNCH...18
7.6 AVRCP, A2DP, VDP..18
7.7 HFP...19
7.8 HSP...20
7.9 GSM 07.07 AT-commands...20
7.10 GNSS..20

8 Global Positioning System (GPS)...21
9 Media Downloading...22

9.1 Potential legal issues regarding communication with Apple devices...........23
9.2 UPnP...23

Index of Illustrations
Illustration A: ConnMan, BlueZ and oFono interactions..5
Illustration B: HFP-powered phone call..16

1 INTRODUCTION
Network management is the task of managing the access to networks. In other
words, deciding when and through which means to connect to the internet. In an
IVI context this task is affected by several conflicting requirements. Connectivity
may be spotty at times, with tunnels, high speed causing WiFi networks to come
and go quickly, low cell phone signal strength, and so on. On the other hand,
potentially good connectivity while parked, since the user might have high quality
WiFi at the office and at home. Network Management will be discussed in chapter
2, Network management.

Online and cellular-based real-time communications, including chatting, voice
calls, VoIP and video calls are covered in chapter 3, Real-time communications.

It is very common these days to have people carrying one or more smart devices
with them. People want those smart devices to connect to their in-vehicle
infotainment system for playing audio, importing contacts and also use or share
Internet connections. This is discussed in 4, Tethering from mobile devices.

The main medium used for inter-device communication, Bluetooth, and its various
profiles are discussed in chapter 7, Bluetooth support. A brief discussion of using
GPS to enhance network management and about the GeoClue framework are the
subject of chapter 8, Global Positioning System (GPS).

Contacts management is covered by a separate document. Integration with other
devices by means other than Bluetooth and USB mass-storage, such as reading
songs off of an iPod is the topic discussed in chapter 9, Media Downloading.

2 NETWORK MANAGEMENT
The main goals of network management in an IVI system are to make sure the
best connection is being used at all times while providing enough information to
applications so that they can apply reasonable policies. For example, the IVI
system should be able to fall-back to a metered 3G connection when an active
WiFi connection is lost (because, say, the user drives their car out of their garage).
In addition, big downloads should be paused in such a case; these would only be
resumed when on an unmetered connection, to avoid significant charges on the
user's phone bill.

ConnMan1 is the central piece of the network management system being
considered for Apertis. It is focused on mobile use cases, provides good flexibility
and features that allow implementation of the use cases mentioned above. oFono2

is the de-facto standard when it comes to cellular connections and related
features, and it is able to work in cooperation with ConnMan.

To complete the functionality expected from a modern network management
framework, Bluetooth integration is also important. BlueZ3 is used to provide that
integration, allowing ConnMan to use Bluetooth devices to go online. Illustration A:
ConnMan, BlueZ and oFono interactions has a schematic view of the interactions
among these frameworks.

Illustration A: ConnMan, BlueZ and oFono interactions

1 http://ConnMan.net/
2 http://oFono.org/
3 http://bluez.org/

2.1 SWITCHING TO A DIFFERENT CONNECTION

Bosch has very specific requirements about how and when the system should switch
from an active Internet connection to a newly­available one. ConnMan developers
are working in a infrastructure for policy plugins. Collabora believes this new
infrastructure can be used by Bosch to implement the policies required to satisfy the
requirements.

The two main concerns are that the system should not switch to a WiFi network that
just became available, since that may just be an open network in a café the car is
passing by, but that it should also take advantage of good known connections when
they are available.

ConnMan provides several facilities to gather information useful for such policy
decisions. For instance, a network that has been manually selected by the user will
have the Favorite property set to true.

That can be used to implement a policy of never automatically migrating to open
WiFi networks that are detected, unless it has been successfully used before. This
would guarantee that the system is able to switch automatically to relevant
networks without running into the problem of trying to associate with the every
open network it passes by.

Because connections may be lost or replaced by a better connection by ConnMan,
applications need to be aware that their session may go away at any time, and be
able to recover from that. When a connection change happens, ConnMan will emit
a D­Bus signal, and applications may need to drop connections they have started
and restart whatever they were doing.

A concrete example would be the email application that is connected to an IMAPx
server; when a connection change happens, the application gets notified the
connection it was using has gone away, so it drops all connections it had with the
IMAPx server. If the new connection satisfies the requirements specified by the email
client on its ConnMan session, it gets a “now online” notification and reconnects to
the server.

2.2 APPLICATION REQUIREMENTS AND EXPRESSING PREFERENCES

One very important characteristic of Apertis is that its Internet connectivity will vary a
lot – going from a high speed WiFi network to a slow, unreliable, metered GSM
connection and back is a common scenario, as discussed in the previous section. It
may also be required that a particular type of connection be established to
accommodate the needs of some applications.

ConnMan has a feature called Sessions. What that feature provides is a way for
applications to tell ConnMan what they expect from an Internet connection, and get
from ConnMan a network connection status that is relative to those requirements.

For instance, an application that downloads podcasts may have a policy that it
would only perform the downloads when on WiFi. This application would create a

session with ConnMan, and specify settings that ConnMan uses to decide whether
that session is to be considered online or not.

The main settings are the AllowedBearers and ConnectionType. The first of these
specifies which kinds of connections are allowed for the type of traffic this application
intends to do. It is a simple list that specifies the preferred connection methods, such
as, [cellular, wifi, bluetooth], which would specify a preference of cellular connection
over both WiFi and Bluetooth .

A special “*” bearer can be used to specify all bearers, which makes it easy to
specify preference for one over all others, which will be treated as equivalent. When
one of the connections allowed for an application comes online, the sessions is
declared to be online. When a change happens on a Session setting ConnMan
updates the application with the new values for the changed settings.

The second, ConnectionType, is used by the application to tell ConnMan if a
connection wants to be online or if local connectivity is enough. Local connectivity
means only connectivity in the internal network is needed, for example, an
application may want to exchange data with other devices inside the same network.
There is not much use for this setting in Apertis.

An application can have more than one ConnMan session at the same time,
allowing applications to specify multiple policies and preferences, and perform work
according to what is actually available. In addition to these three settings discussed
here, ConnMan also provides several settings that can be used to customize how
both sessions and the system deal with networking4.

Note that the Session API is still in a experimental state and it implementation and API
are changing rapidly. This means both that it cannot be considered a stable part of
the API supported by Apertis and that very few existing applications use it's current
form. This should not be a problem for Apertis since Bosch does not want applications
to use ConnMan directly, so a wrapper API can be specified by Bosch for the SDK.

2.3 BINDING TO THE APPROPRIATE NETWORK INTERFACE

ConnMan allows multiple connections to exist at the same time. This might be useful
for various reasons but it also brings some complications with it. First of all, if an
application wants to use a specific connection it needs to explicitly bind its network
usage to the desired network interface.

However, binding to a specific interface requires the NET_RAW capability5 that is not
something that regular applications should be allowed to have. A possible solution
would be to also delegate this binding to special application that has the privileges
to do such binding. The viability of such a solution needs to be properly investigated
during the initial development of the feature by Bosch.

4 http://git.kernel.org/?p=network/connman/connman.git;a=blob;f=doc/session-
api.txt;h=e19c6bfe0b6e6fc379cfa3632ac21f338610717d;hb=HEAD

5 http://git.kernel.org/?p=linux/kernel/git/next/linux-
next.git;a=blob;f=net/core/sock.c;h=b374899aecb6ea3a8590ae9ccdbb3e60225561d4;hb=HEA
D#l470

Please note that using this functionality or not is Bosch's decision. Also, keeping in
mind Bosch's desire to take complexity and control away from applications it seems
desirable to abstract this complexity away to the SDK. The SDK can provide APIs that
wrap ConnMan functionality and handle binding for the application. This means
more Apertis­specific code, however, meaning less code reuse for existing
applications.

2.4 CONNECTIONS POLICIES AND STORE APPLICATIONS MANIFESTS

As discussed above, some control can be exerted on how ConnMan ranks and
chooses connections by having applications (or a system service on their behalf)
provide ConnMan with a list of their requirements using the Session APIs.

Bosch has made it clear that applications from the store should be specifying their
needs as much as possible through the manifest file that will be distributed along with
applications on the app store. For network management this means specifying the
allowed bearers, mainly.

Bosch's policy plugin mentioned above could use information provided by Bosch's
application manager and application manifest files to decide on what the best
policy to implement is. This would not require changing applications, but limits the
flexibility the developer has to work with.

2.5 NETWORK­RELATED EVENTS AND HOW APPLICATIONS NEED TO BEHAVE

For applications that are written to work with ConnMan, two signals are essential:
connection is up, connection is down. When a connection comes up the application
takes the appropriate steps to start whatever its functionality is. An IMAP mail client
would at this point connect to the IMAP server, and look for new messages, a
podcast downloader would look for new podcasts to start downloading or resume
any downloads that had previously been started, and so on.

When the connection goes down – even if it's just being switched from one
connection method to another – any existing IP connections would not work any
more, since the IP address will have changed. The application needs to close any
connections. This means an IMAP mail client would close the sockets it had open with
the IMAP server, a podcast downloader will close the HTTP or FTP connections, and so
on. The connections can be re­established/resumed in case a new notification
comes in that the system is online once more.

The following is a potential list of applications and events they will be interested in
handling. As will be seen the events an application needs to handle are essentially
limited to having a connection and not having a connection any more.

Email client

• Connected event

◦ Connect to IMAP server and check for new mail; note that IMAP

connections are usually kept alive to receive notifications of new email
from the server

◦ Connect to the SMTP server to send any emails stored in the outgoing
mail box

• Disconnected event

◦ Drop IMAP connections

◦ Cancel ongoing loading of email messages

◦ Cancel ongoing sending of email messages, making sure they stay in the
outgoing mail box

Media player

• Connected event

◦ In case multiple connections are supported, when a faster connection
appears switch to it of needed.

◦ If media is being played and previously disconnected, resume buffering

• Disconnected event

◦ Drop connections

Feed reader

• Connected event

◦ Begin download of the latest entries

◦ If it's a fast connection, begin pre­caching of images and other big feed
attachments

• Disconnected event

◦ Drop connections

2.5.1 CONTINUING DOWNLOADS

The HTTP protocol provides clients and servers with the ability of picking up a transfer
from a given point, so that partially downloaded content does not need to be re­
downloaded in full when a connection is dropped and reconnected. Details about
how the protocol supports partial downloads can be found in RFC26166.

In summary, when picking up a download the client should send a Range header
specifying the bytes it wants to download. If the server supports continuing
downloads and the range is acceptable a 206 Partial Content response will be sent
instead of the usual 200 OK one. The client can then append the data to the partially
downloaded file. If the server does not reply with a 206 response, then the file needs
to be truncated, since the download will be starting from scratch.

6 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35

2.6 CONNECTIVITY POLICIES ON ANDROID

Connectivity policies on Android are a way more simpler than the policies Bosch is
planning for the IVI system. The Android system does not implement any per
application configuration on how application should access the internet (wifi, 3g,
etc.).

Also Android does not have any mechanism to notify the applications that the system
is online, the applications just get a notification about a Network State Change and
then they have to figure out by themselves if the system is online by requesting a
“route to host”.

One of the few network configurations android has is to enable/disable Wi­Fi, mobile
data and roaming allowance globally. Apart from that the user can also restrict
background data usage for each applications in the Global Settings.

3 REAL-TIME COMMUNICATIONS
The Apertis needs to be well-connected with Internet communication services
such as Google Talk and Skype. Telepathy7 provides a framework for enabling
messaging, video and audio calling through many of the existing services, and
more can be supported by developing custom connection managers8.

Telepathy provides a D­Bus API which abstracts away the specific connection
managers allowing a UI to seamlessly support various protocols while only having
little or no protocol specific knowledge. The fact that Telepathy is implemented as
several D­Bus services makes it possible to integrate messaging and voice
features throughout the system.

A good example of these are the chat, dialler and address book applications
present on the Nokia N900 and N9 devices9, which use Telepathy to support
messaging, GSM and VoIP Calls using one single user interface, while at the same
time providing ways for the user to choose which protocol they want for a given
conversation.

Existing open-source connection managers support messaging through Jabber,
GTalk, Facebook, Live Messenger, and more. Audio and video calls are also
supported over Jabber, GTalk and SIP. See the Telepathy wiki for more details10.
Before deciding on shipping any of these, however, it's important that Bosch
verifies whether any legal issues may arise, mainly related to trademarks.

As discussed before, Telepathy is pluggable, enabling a mix of closed and open-
source connection managers to coexist. This enables Bosch and OEMs to enable
as many third-party services as desired, requiring for the technical side at most
the creation of a new connection manager.

Collabora has been involved in consultancy projects to integrate various
proprietary backends in the past and is ready to do so again if Bosch decides to
include support for more protocols. More details about this will be included in
reference produced during the development phase by the documentation team.

3.1 TRADITIONAL TELEPHONY (GSM, SMS)

The system shall support making and receiving calls and sending/receiving text
messages through a paired cell phone. Telepathy has a backend on top of oFono
to make calls and send text messages, which makes it possible to easily have a
single, integrated user interface for both regular phone calls and messages along
with those of online services.

Telepathy is focused on messaging and calling; as such, it does not include
GSM/UMTS-specific functionality like signal-strength, data connections, and so on.
Those features are accessible through oFono directly.

7 http://telepathy.freedesktop.org/wiki/
8 http://telepathy.freedesktop.org/doc/book/sect.connection.connection-manager.html
9 http://techprolonged.com/index.php/2011/11/12/nokia-n9-a-complete-walk-through-meego-

harmattan-software-and-user-interface-experience/#contacts-calling
10http://telepathy.freedesktop.org/wiki/Protocols%20Support

4 TETHERING FROM MOBILE DEVICES
There are six main ways to hop on to a mobile device's Internet connection:

• WiFi connection for devices that support mobile hotspot

• Using the DUN Bluetooth profile, through oFono

• Using the PAN Bluetooth profile

• Using Ethernet over USB

• Using 3G USB modem

• Using device-specific proprietary protocols

A mobile hotspot feature is becoming more common on mobile devices and, in a
way, taking the place once occupied by Bluetooth for tethering. It is a good
connection method because it is very simple to set up.

The PAN profile is supported by ConnMan through BlueZ and DUN also needs
these two components to works plus a extra one, which is oFono. This difference is
due to the fact that the DUN profiles behaves like a modem and thus needs oFono
to handle it. All interactions between BlueZ and the two other daemons, ConnMan
and oFono, are performed using BlueZ's D­Bus interface, and as such should not
cause problems for Bosch in case it plans to replace BlueZ with a proprietary
counterpart that implements the same interfaces.

Note that connecting a phone to the car for tethering over Bluetooth is a process
that requires user intervention: the user needs to first pair the two devices. In
most systems that support connections over the cell phone network the user is
also asked to choose the plan they acquired from their provider from a list, which
will also need to be done for the Apertis; only then the connection will be made
available through ConnMan.

Ethernet over USB is supported by Linux using the usbnet driver. Among device-
specific protocols, Apple devices in particular are important for Bosch. Linux
includes, since version 2.6.34, the ipheth11 driver, which enables using Ethernet
over the USB connection for Apple devices. In addition to the driver, pairing of the
device by a user-space program is required. That pairing can be performed either
by using the standalone tool provided at the project's web page or through the
tools distributed by the libimobiledevice project, discussed in section 9, Media
Downloading. Please check section 9.1, Potential legal issues regarding
communication with Apple devices for more information.

Collabora believes the three main components discussed here, BlueZ, oFono and
ConnMan are capable of supporting tethering to most mobile devices. Provided
appropriate user interfaces are implemented, ConnMan is able to provide all
requirements described by Bosch regarding having several different phones in the
car, including prioritizing and selecting which one should be used.

11http://giagio.com/wiki/moin.cgi/iPhoneEthernetDriver

5 COUNTING BYTES AND GETTING INFORMATION ABOUT
BANDWIDTH
ConnMan provides an API called Counters that is used for tracking how much
traffic has gone through a given connection, and can be used by the network
connections management UI to inform the user about the quantity of data that
has been transmitted. The counters are per-connection and are automatically
updated with the information by ConnMan.

oFono also provides the CallMeter API for tracking how much conversation time
is still available for a GSM phone, using data from the SIM. oFono is able to emit a
warning when the limits are close to be reached.

For measuring bandwidth there is no convenient API at the moment. Clients can
register a counter and specify an update interval, but ConnMan advises against
using that API for tracking time. A more robust and correct implementation would
be to have applications and services that care about that information track the
RX/TX bytes and run a timer of their own to estimate how much bandwidth is
being used at a given point in time.

It is important to note that tracking connection quality taking in account used
bandwidth (and possible other variables as connection latency and available
bandwidth) is not a easy task. Usually those variables doesn't give enough
information to decide which connection has the better quality.

6 PROVIDING INTERNET CONNECTIVITY TO OTHER DEVICES
In case the Apertis has Internet connectivity itself, it should be able to share it
with other devices through either Bluetooth or WiFi.

ConnMan supports sharing the current Internet connection by using the WiFi
interface in master mode or via Bluetooth PAN profile, becoming an access point
that other devices can connect to. This is done by turning on tethering mode on
WiFi or Bluetooth12. As is the case with other features, this needs proper UI to be
created to let the user turn the tethering on as well as specify the desired SSID
and pass-phrase for WiFi, or to pair the Bluetooth devices. In order for this feature
to be provided, the driver for the wireless chip used in the development board
needs to support the master mode.

6.1 A WEB SERVER TO PROVIDE INFORMATION

Apertis will have a web server running internally to provide information about the
system and the car for access by smart phones. Collabora's working assumption is
the server will be available to devices that connect to the WiFi or Bluetooth
hotspot provided by the system, regardless of whether it is being used to provide
Internet connectivity to the devices or not. Libwebsockets can be used to write
Bosch's own solution for web server.

For users to access the web server, the manual of the device will contain a
specific URI, and the DNS server provided by the device will resolve the name to
the address the system has in the address space used by its DHCP.

12See the tethering properties at the bottom of http://git.kernel.org/?
p=network/connman/connman.git;a=blob;f=doc/technology-
api.txt;h=851d5ea629975c9c82d86c7863aaab2997485c34;hb=HEAD

7 BLUETOOTH SUPPORT
The automotive space is by far the biggest user of Bluetooth for communications
between the car and external devices, such as phones, tablets, notebooks, and so
on. Bosch has stated it plans to acquire a proprietary solution and supplement
BlueZ in the apertis.

That solution sits in between applications that use BlueZ and the BlueZ daemon,
and adapts requests to make sure specific device quirks are satisfied.

BlueZ is currently a fairly complete Bluetooth stack, and has support for all of the
major Bluetooth profiles13. It's important to note, however, that applications need
to be written to use the Bluetooth infrastructure for connecting to mobile devices
for music playing, remote control, file transfer, downloading of contacts and
tethering.

For other Bluetooth profiles, the ones supported by BlueZ will be provided,
development of support for more profiles is out of scope for this project. The list of
Bluetooth profiles bellow was extracted from the Apertis Feature List document,
and information is provided on the general level of support provided by BlueZ. For
a more detailed list of existing support and gaps, Collabora would require a more
detailed list of requirements from Bosch.

When it comes to pairing support BlueZ supports both Legacy Pairing (PIN entry,
many old devices only support this type of pairing) and Secure Simple Pairing
(Numeric Comparison).

7.1 BLUETOOTH 3.0, 4.0, HIGH SPEED, L2CAP, SDP, RFCOMM

BlueZ currently supports the both Bluetooth 3.0 and 4.0 core specification.
However, High Speed support through 802.11 AMP is still under development, so
it is not currently supported. The Bluetooth core support provided by BlueZ
includes Logical Link and Control Adaptation Protocol (L2CAP), Service Discovery
Protocol (SDP) and Radio Frequency Communications (RFCOMM).

7.2 SPP

The Serial Port Profile (SPP) 1.1 is supported by BlueZ. The Serial Port Profile
allows emulation of serial ports over a Bluetooth link.

7.3 PAN AND DUN

As discussed in sections 2. Network management and 4. Tethering from mobile
devices, BlueZ provides support for the Personal Area Networking (PAN) profile
both in the NAP role (BlueZ acting as connection provider) or PANU role (BlueZ
using a internet connection over Bluetooth).

There is support for the DUN profile. The Client role is implemented by an extra
oFono's daemon and can be used to connect to devices providing internet

13http://www.bluez.org/profiles/

connection.

There is also support for the server role of the Dial-up Networking (DUN) profiles,
which can be used with oFono and ConnMan to provide Internet connection to an
external device. However current implementation only supports sharing a DUN
connection only if the device has a GPRS data connection active. Collabora thinks
that lack the support for DUN server won't be a problem. DUN is rapidly being
replaces by the PAN profile.

7.4 GOEP, OBEX

The Generic Object Exchange Profile (GOEP) and Object Exchange Protocol
(OBEX) are also supported by BlueZ. They enable file exchange between
Bluetooth-capable devices and the Apertis system.

7.5 PBAP, MAP, OPP, SYNCH

The Phone Book Access Profile (PBAP) is supported by BlueZ, and can be used for
downloading contacts from the external devices. There is also support for Object
Push Profile (OPP), used for transferring vCards and vCalendars. Finally, BlueZ
also supports the 1.0 version of the Message Access Profile (MAP) version 1.0 in
the client role, which can be used to download SMS messages and email from a
phone onto the Apertis system, however support to upload delete and mark
messages as read/unread is lacking at the moment.

Note that, although BlueZ includes support for these profiles, it's up to
applications on the system to make use of the framework to provide the actual
features. For instance, the contacts application needs to talk to BlueZ to perform
the phone book download.

There is currently no support for the Synchronization Profile (SYNCH) profile.
Collabora's current understanding is this does not pose a problem for the use
cases planned by Bosch, since only support for download of the contacts is
required.

For more information on the specific use-cases, problems and proposed solutions
regarding contacts in the Apertis system refer to the Contacts design document
prepared by Collabora.

7.6 AVRCP, A2DP, VDP

These profiles are used to communicate with devices that are able to reproduce
multimedia content and/or control media playing remotely.

BlueZ supports the Audio/Video Remote Control Profile 1.0 (AVRCP) in the
controller role, but it only supports the two commands at the moment: Volume
Down and Volume Up. Collabora recommends the development of the missing
features for AVRCP 1.0 version and also support for the 1.4 version, which is not
yet supported by upstream. This would provide metadata information about the
media and folder browsing support.

When acting as a controller, an application needs to provide the user with an
interface for inputting commands. Collabora will provide sample code for an
application acting on the controller role.

Also included is support for acting as sink for the Advanced Audio Distribution
Profile (A2DP) version 1.2, using PulseAudio to provide audio routing. When the
device starts to send an A2DP stream to Apertis PulseAudio will automatically
make it available as an output device.

PulseAudio has a module that can automatically redirect streams to new output
devices. However, for systems with complex requirements for audio routing it's
probably a better idea to have a system daemon or application managing that;
the car system interface D­Bus daemon is one viable candidate.

The Video Distribution Profile (VDP) is not yet supported

7.7 HFP

The Hands-Free Profile (HFP) version 1.6 is supported by BlueZ. Hands-free is the
technology that allows making phone calls with voice commands, and having
audio routed from the phone to a different device, such as the Apertis system
which can then play it to the car speakers, for instance. The BlueZ framework,
along with oFono, can be used to add hands-free support to the system. Wide
Band Speech – high quality audio for calls, though, is not yet supported by BlueZ.

After a SIM-enabled device in Audio Gateway mode has been paired with BlueZ,
PulseAudio will be able to use it as source and sink through its Bluetooth module
and route streams from the car's microphone to the phone and the audio from the
call to the car's speakers. In this case BlueZ acts as in the Hands-free role.

The application which handles the calls can use PulseAudio APIs to control the
volume of the source and sink streams, and should set the filter.want property of
the PulseAudio streams14 to let PulseAudio know echo cancellation should be used.

This will cause PulseAudio to automatically load the echo cancellation module.
The echo cancellation module can also contain a noise cancellation sub-module.
PulseAudio ships with an Open Source sub-module based on speex for echo
cancellation, but it can be replaced by custom or proprietary modules if required,
which was the course chosen by Nokia for its phones, for instance. The same goes
for the noise cancellation sub-module, it can be easily replaced by an proprietary
noise cancellation solution just by rewriting the sub-module.

The diagram in Illustration B: HFP-powered phone call shows how the various
pieces of such a set-up are related.

14http://freedesktop.org/software/pulseaudio/doxygen/proplist_8h.html#a87c586045175fa05e28e
6ee1cbaac4de

Illustration B: HFP-powered phone call

7.8 HSP

Currently BlueZ has no support for the Headset Profile (HSP). Collabora
recommends it be supported, but that would require development of the feature.
VoIP applications rely on HSP to operate calls over Bluetooth, It is also important
to mention that older phones only support the HSP profile for phone calls.

7.9 GSM 07.07 AT-COMMANDS

oFono has support for most of the GSM 07.07 AT command set. It is through the
AT command set that we control the phone in the HFP profile.

7.10 GNSS

The Global Navigation Satellite System Profile is currently not supported by BlueZ,
nonetheless adding support would be simple in the BlueZ side. For this profile,
BlueZ would only provide the Bluetooth connection handling, all the navigation
specific data would be passed to the GPS specific application to handle it.

8 GLOBAL POSITIONING SYSTEM (GPS)
The Apertis platform provided by Collabora will include the GeoClue geolocation
framework. GeoClue15 provides a D­Bus service that can be queried to establish
the current location of the system with configurable accuracy. GeoClue is able to
use the GPS from the system to provide very accurate location information.

This technology will be used, for instance, to power the existing GeoLocation
implementation of the WebKit­Clutter library. The service can be made available
for use by store apps, potentially including selective restrictions on the accuracy
each app can query. This should be discussed and specified during the
development phase.

The connectivity considerations document provided by Bosch discusses using GPS
data for predicting connectivity conditions, and pre-emptively switching to a
different connection before entering an area with bad coverage, for instance. This
seems to be a risky strategy unless very up-to-date and very extensive data are
accessible to the system at all times. In any case, should Bosch want to
experiment with this approach, the GeoClue framework could serve the purpose
of providing the location information from the GPS.

One additional advantage of using GeoClue is it supports using different providers
for its information16 like cell towers through oFono-based gsmloc, WiFi networks
through integration with ConnMan, IP addresses through HostIP17, and so on.
Those could be useful to provide location information with coarse accuracy for
applications such as the web browser with no need for turning the GPS on or for
systems with no GPS hardware. If only GPS matters, and tighter control is
required, Collabora can support using the GPS service directly through gpsd18 or
gypsy19.

If Bosch wants to define different accuracy levels that store application can use,
different permissions for GPS access can be created representing the different
levels of accuracy. These permissions would be specified in the application's
manifest and prompted to the user at the moment the user authorizes the
installation of an application. Refer to the Applications design for more details on
this.

15http://www.freedesktop.org/wiki/Software/GeoClue
16A somewhat outdated list: http://www.freedesktop.org/wiki/Software/GeoClue/Providers
17Note that HostIP is essentially useless for mobile use cases, since it tries to use the IP address

as an indication of the location, but that is not very accurate in general and for mobile
specifically

18https://savannah.nongnu.org/projects/gpsd
19http://gypsy.freedesktop.org/

9 MEDIA DOWNLOADING
This chapter discusses how communication with various devices is made to
provide the Apertis system with ways of downloading media from them. For more
detailed information on use cases, requirements, problems and solutions refer to
the Media Management design document (sometimes called the Media and
Indexing design) prepared by Collabora.

In general media will be brought into the system through USB sticks, mobile
devices and online sources. USB sticks are mounted using the USB mass-storage
support. Most USB sticks use the VFAT file system, which is, unfortunately, patent-
encumbered and has been used in the past by Microsoft to promote law suites
against companies shipping devices that support the file system20.

When considering communication with specific devices the ones that stand out
are the Apple devices, which are both very well-known and have widespread
usage. This document discusses the Open Source tools that are currently the state
of the art for communicating with Apple devices but does not specifically
recommend their usage for reasons that are discussed later on in section 9.1,
Potential legal issues regarding communication with Apple devices.

The libimobiledevice21 suite is the state of the art on Open Source libraries and
tools for accessing Apple devices. It implements the protocols used for
communication with Apple's iPhone, iPad, iPod Touch and TV products, covering
almost all available functionality, including downloading of music and video, when
used in conjunction with libgpod of the gtkpod project22. Its pairing tool is also a
requirement for using the ipheth driver mentioned before.

The project is a community effort and although it does not require the devices to
be jail-broken, it's not supported by Apple, which means the protocol is reverse-
engineered and often lags behind recent Apple releases. As an example, iOS 5
support has only recently (22/03/2012) seen the light of day in a release. Despite
these shortcomings, the suite would provide Bosch with the technical means for
writing the applications that interact with Apple products.

Microsoft has also developed a protocol for media exchange called Media Transfer
Protocol (MTP). This protocol has been standardized and is currently published by
the USB implementers forum22. A LGPL-licensed library exists that supports the
Initiator side of the communication, meaning it is able to access media on devices
that support the MTP Responder side: libmtp23. The libmtp library is currently
shipped as a part of Ubuntu and can be provided in the Apertis middleware
platform to be used by Bosch to implement applications. Note that as is the case
for Apple devices, Collabora is unable to provide legal counselling about the use of
libmtp.

20http://www.groklaw.net/article.php?story=20090401152339514
21http://www.libimobiledevice.org/
22 http://www.usb.org/developers/devclass_docs/MTP_1.0.zip
23http://libmtp.sourceforge.net/

9.1 POTENTIAL LEGAL ISSUES REGARDING COMMUNICATION
WITH APPLE DEVICES

Collabora understands Bosch has come under agreement with Apple to ship an
authentication chip for talking to Apple devices. However, Collabora is unable to
provide legal counselling regarding what can and cannot be done safely with
Open Source components that communicate with Apple devices for several
reasons, including the fact that Collabora is not fully aware of the terms of the
agreement between the two companies.

Bosch's approach of having an application for each media source, and the fact
that the underlying libraries would not be exposed to store's applications and
users does not affect the risks in any way, from Collabora's point of view.
Collabora is unable to advise Bosch on whether it would be a problem if the
libraries are only shipped as part of the SDK and not on the product. Considering
all these facts Collabora believes the best course of action would be for Bosch to
consult with its legal department and OSS officer. Provided a positive response is
received from these consultations, Collabora will be happy to provide the libraries
as part of the OSS middleware delivery.

9.2 UPNP

Universal Plug and Play (UPnP)24 is a protocol used for discovering and browsing
multimedia content made available by media centers. This protocol will be
supported by the Apertis middleware platform using the gupnp library. For more
information about this please see the Media Management design document
(sometimes referred to as Media/Indexing design).

24http://www.upnp.org/

	Document Change Log
	1 Introduction
	2 Network management
	2.1 Switching to a different connection
	2.2 Application requirements and expressing preferences
	2.3 Binding to the appropriate network interface
	2.4 Connections policies and store applications manifests
	2.5 Network-related events and how applications need to behave
	2.5.1 Continuing downloads

	2.6 Connectivity policies on Android

	3 Real-time communications
	3.1 Traditional Telephony (GSM, SMS)

	4 Tethering from mobile devices
	5 Counting bytes and getting information about bandwidth
	6 Providing Internet connectivity to other devices
	6.1 A web server to provide information

	7 Bluetooth support
	7.1 Bluetooth 3.0, 4.0, High Speed, L2CAP, SDP, RFCOMM
	7.2 SPP
	7.3 PAN and DUN
	7.4 GOEP, OBEX
	7.5 PBAP, MAP, OPP, SYNCH
	7.6 AVRCP, A2DP, VDP
	7.7 HFP
	7.8 HSP
	7.9 GSM 07.07 AT-commands
	7.10 GNSS

	8 Global Positioning System (GPS)
	9 Media Downloading
	9.1 Potential legal issues regarding communication with Apple devices
	9.2 UPnP

